Rail Vehicle Peak Heat Release Rate Estimation

73

Nonlinear Regression Model for Ride on Railway

Bogdan ZOETOWSKI', Leonel CASTANEDA?, Mariusz ZOETOWSKI®

Summary

The portable diagnosis system — SPD - evaluates the safety and ride quality aspects of the railway vehicles and the technical
condition of the rail-vehicle interface. The objective of this article is to estimate the nonlinear regression model associated
with the ride quality or motion behavior, by applying fuzzy clustering algorithms to the geometric data obtained from the
technical condition of the railway-vehicle interface and measuring quasi-static lateral acceleration y" , in different vehicles.
The performance will be evaluated by comparing the measured acceleration y’ with the acceleration calculated in our
model y’ , for 15 different vehicles. The obtained results will be then compared with the results of the multiple linear

regression model used previously for the same purpose.
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1. Introduction

The ride quality of passenger railway vehicles, ac-
cording to the UIC-518 norm from the International
Union of Railways, is connected with the value of
acceleration y’ » which should have a limit value of
1,5 m/s* [12]. Due to the high cost involved in mea-
suring of the acceleration y*_, of each vehicle, it is nec-
essary to obtain a tool (model) that allows predicting
the behavior of the acceleration y°  according to the
measured 23 geometric variables which are routine-
ly measured in the normal preventive maintenance
routine of the railway, without the need of perform-
ing a y'  measuring process. Many of the traditional
method used to solve this problem are based on glob-
al models like Polynomials (ARMA, ARX, NARMX,
NARMAX) [6, 17, 20], radial basis functions and neu-
ral network [21, 10, 16, 19], fuzzy clustering [1, 17]
among others some of them are used in similar rail-
way applications in the world [7, 8].

The fuzzy clustering is to approximate a nonlin-
ear regression problem by decomposing into several
local linear models; this approach has advantages in
comparison to global nonlinear models [1, 24]. The
model structure is easy to understand and interpret,
both qualitatively and quantitatively. Besides, the ap-
proach has computational advantages and goes down
to straightforward adaptive and learning algorithms.

To show the feasibility of the approach, we will com-
pare the obtained results using fuzzy clustering with
the Babuska toolbox [1] with the results obtained
with the multiple linear regression model used previ-
ously for the same purpose [24].

This article is part of the development of SPD (Por-
table Diagnostic System, [3—5, 13, 18, 23—-24], which
consists of the measurement of the vehicle’s variables
allowing the identification of the technical condition
for the vehicle-railway interface.

Section 2 of paper introduces the element for the
regression used in the SPD system; in section 3 we
will review the nonlinear regression; section 4 will
detail the fuzzy clustering methodology; and sections
5 and 6 will show the results the comparison with
NRL (multiple nonlinear regression) [24] and conclu-
sions respectively.

2. Study system

The Metro system of Medellin was created on may
1979 by the Municipality and Antioquia Department,
allowing the creation of the Metro Company. Descrip-
tion of the railroad (Fig.1):

e Line A: paralell to the Medellin River and with
the length of 23.2 km, with 19 stations in North to

South direction.
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e Line B: it starts from the centre of the city in San
Antonio B Station and goes westwards. It has the
length of nearly 5.6 km and has 7 stations.

e Linking Line: it connects the two lines described
above and has the length of 3.2 km.

e Line K: it is a cable transport system that connects
the Acevedo Station. It consists of 4 stations the
length of 2.4 km.
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Fig. 1. Metro System of Medellin

In order to extract the data, both estimators given
by the UIC 518 standard and the geometric variables,
the complete railroad of the train is taken and the
measuring points were classified by sections, just as
the standard UIC-518 recommends. The three zones
proposed by the standard are considered: tangent
tracks, large radius curve tracks and low radius curve
tracks; however, the lengths of sections composing
different zones were adapted according to the distri-
bution of the Line A road of the Metro system. The
considered lengths were:

e tangent track: 160 m,
e large radius curve track: 70 m,
e short radius curve track: 70 m.

2.1. Data acquisition

The Portable Diagnostic System — SPD —is a unique
solution for railway systems which, apart from evalu-
ating safety, ride quality and monitoring the condi-
tion of geometric parameters of the track-vehicle in-
terface, also allows carrying out the multidimensional
monitoring of the condition and to determine the
failures of passenger vehicles of the Metro [3-5, 24].

To develop this diagnosis tool, different method-
ologies were used, grouping several modern and ef-
fective methods in diagnosis tasks, which go from the
selection of measurement points, through the method
of evaluation of compliance with UIC-518 standard
until the utilization of an optimized forecast method
[3-5, 12, 24,].

The system is composed of eight modules: sensors,
signal processing, condition monitoring, condition
testing, incipient failures detection in the wheel-rail
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interface, decisions support, forecast and presenta-
tion. In the Fig. 2, the SPD module structure is shown.

‘ PORTABLE DIAGNOSIS SYSTEM ‘

N D A N I

SpuaL WONITORING FaLURE
SENSORS ||  SEMAL (| MOWTOAME e Rl FORECASTING

MODULE NODULE MODULE MODULE NODULE uonuLE uenuLE

CONDTON DECERNS PRESENTATION
suppaRT MODULE

TECHNICAL
RIDE STATE OF THE
QUALITY RAIL-VECHICLE
uUic 518 INTERFACE

Fig. 2. Module of the SPD

The signal obtained by the SPD allows calculat-
ing the lateral and longitudinal forces generated in
the wheel-rail along the track which are necessary for
safety evaluation. The UIC-518 standard describes the
experimental procedures to follow in order to carry
out the motion tests and the analysis of the results, in
terms of quality and rolling from the point of view of
dynamic behavior in relation to safety, railroad wear
and running behavior (ride quality) with the purpose
of an approval for the international railway traffic.
Table 1 presents the different estimators considered
by the standard. It was necessary to acquire accelera-
tion and forces signals in different parts of the train to
calculate the estimators [19].

Since this article is limited to the ride quality eval-
uation, the estimator to use will be the acceleration
Vst According to the UIC-518 standard [12] the limit
value of this acceleration of 1,5 m/s? defines the ride
quality or motion behavior of the vehicle.

This estimator is obtained from the lateral acceler-
ation signal, taken form the vehicle body. These mea-
surements are filtered by Butterworth 8" digital filter,
order 8 and cut-off frequency of 20 Hz.

2.2. Geometric variables

Among the current maintenance routines of the
railway system, different geometric variables that give
an idea of the technical condition of the rail. Table 2
contains information also on equivalent conicity
which is related to vehicles.

3. Principles of regression
Generally, fuzzy systems are approximations of

functions. Because of this, they can also be used in
nonlinear regression problems. The nonlinear regres-
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Estimators for safety, ride quality, and track fatigue according to the UIC-518 Standard

Estimator
SY2m
SY2m (99,85%)
SY2m (0,15%)
sSY
Yqst
y*q
y:¥q (99,85%)
v:¥q (0,15%)
sy:*q
y:*gst
z:*q
2:%q (99,85%)
2:*q (0,15%)
sz:*q
I

Geometric Variable
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21

X24

Description Units
Sum of guiding forces for axle kN
Sum of guiding forces for axle, Percentile 99.85%. kN
Sum of guiding forces for axle,Percentile 0.15%. kN
Weighted r.m.s of Sum of guiding forces por axle kN
Quasi-static force between wheel and rail m/s?
Lateral acceleration in the vehicle body. m/s’
Lateral acceleration in the vehicle body, Percentile 99.85% m/s?
Lateral acceleration in the vehicle body, Percentile 0.15% m/s?
Weighted r.m.s of Lateral acceleration in the vehicle body m/s?
Quasi-static acceleration in the vehicle body m/s?
Vertical acceleration in the vehicle body m/s’
Vertical acceleration in the vehicle body, Percentile 99.85% m/s?
Vertical acceleration in the vehicle body, Percentile 0.15% m/s?
Weighted r.m.s of Vertical acceleration in the vehicle body m/s’
Cant deficiency mm

State of variables

Description
Equivalent conicity with standard deviation of 1.25 under the UK method
Equivalent conicity with standard deviation of 2.5 under the UK method
Equivalent conicity with standard deviation of 3.75 under the UK method
Maximum speed vehicle
Standard deviation of the vertical alignment
Standard deviation of the horizontal alignment
Cant deficiency
Curve radius
Horizontal alignments
Height difference between the head of the high and low thread
Vertical alignments
Gap between the internal rail faces
Synthetic coefficient of the railroad quality
Vertical wear of the head rail for the high rail (east-south)
Vertical wear of the head rail for the high rail (west-north)
r.m.s of the corrugation for the high rail for a wave lenght between 30 and 100 mm
Excess percentage for the high rail for a wave length between 30 and 100 mm
r.m.s of the corrugation for the high rail for a wave length between 100 and 300 mm
Excess percentage for the high rail for a wave length between 100 and 300 mm.
r.m.s of the corrugation for the low rail wave length between 30 and 100 mm
Excess percentage for the low rail for a wave length between 30 and 100 mm
r.m.s of the corrugation for the low rail for a wave length between 100 and 300 mm

Excess percentage for the low rail for a wave length between 100 and 300 mm

Units
N/A
N/A
N/A

km/h
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Table 1

Limit Value
66.7
66.7
66.7
33.3

60
2.5
2.5
2.5
0.5
1.5
2.5
2.5
2.5
0.75
150

Table 2

Limit Value

80
2.3
1.5
150
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sion is a modeling of static dependence of the response
of a variable called regressor, where: ye Yc R, is a
regression vector, x = [xl, Xy e X 17, over the X ¢ R?
domain. The elements of the regression vector can be
called regressors and the X domain can be called re-
gressor space. The system generated by the data can
be described by:

y= f(x) (1)

The deterministic function f(-)captures the depen-
dence of y in x, and the symbol = reflects the charac-
teristics of y that are not exact in function of x. The
objective of the regression is to use the data in order to
build a function F(x) as an approximation to f(x) not
only because of the data, but because of the domain
itself. The definition of a reasonable approximation
depends on the purpose for which the model is built.
If the objective of the model is to obtain predictions of
¥, the accuracy must be the most relevant criteria. The
accuracy insufficiency is usually known as the integral
error over the domain.

I =[] £() = F(x)|dx (2)

Generally, this error can not be computed, since
the value of fis only known with the availability of the
data. However, the mean of the error prediction of the
available data is often used

= 2Lk ©)

where N is the number of data in the sample.

Apart from the prediction accuracy, the objective
can also be to obtain a model which can be used in
order to analyze and understand the real properties
of the data generator system. The potential of fuzzy
models is that they describe systems as the collec-
tion of simple local sub-models expressed by rules.
The rules can be formulated using a natural language
which is more understandable than a mathemati-
cal language. The rules can also be combinations of
analytical models commonly used in the control field
of engineering, like the local linear models in Takagi-
Sugeno [20].

The input of our model are 23 geometric variables
of the rail state, and with them, the modeled accelera-
tion Y  is calculated. An arrangement is conformed
having a row for each of the n geometric variables
measured for each section, and a column for each of
the Nsections. This arrangement is called the matrix
of observation X.
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2 22 2N
z=|1 (4)
z Z z

Traditionally, the clustering terminology defines
the columns of the matrix of observation X as char-
acteristics or attributes, while the rows are called pat-
terns or objects.

4. Fuzzy clustering logics

It is defined as cluster, the subset of data which are
more similar among them than with other data from
another subset. There are different types of data as-
sociation or clustering, one of the most popular the
Hard clustering which refers to grouping data in spe-
cific clusters mutually exclusive (see Fig. 3), meaning
that the data belongs only to one cluster and not to
several clusters at the same time. In Figure 3, the data
z, could belong to both clusters ¢ and c,, this data is

1 2
not taken into account when using the Hard cluster.

C1

Fig. 3. Data set [1]

It is reasonable to think that on the border of two
clusters ¢, and c, there are some points which have
a degree of belonging to both clusters. The algorithm
c-means allows that each point belongs to a cluster
with a certain degree of belonging, so each point be-
longs to several clusters. This makes the fuzzy cluster-
ing, in some real situations, to be more natural than

the Hard clustering.

4.1. Partition Fuzzy

The objective of clustering is to divide the data set
Z=1{z,,z, ...z} in cclusters (2 < ¢ < N)), that partition
U = [u,], where u, is the degree of belonging of i-th
point to the cluster k. U represents a fuzzy partition if
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the points meet the following conditions:

u, €[0,1] 1<i<c, 1<k<N, (5)
> u, =11<k<N, (6)
i=1

N
0<>u, <N I<i<c. (7)

k=1

Defining the fuzzy partition space as:

u, e[O,l],Vi,k;ZC:uik =1,Vk;

i=1

M, :{UEER”‘N

N
V0 < u, <N,v1}.
k=1

4.2. Algorithm for Fuzzy C-Means

There are different algorithms for fuzzy clustering,
the most used is the ,,C-Mean” algorithm. This algo-
rithm makes the data partition, and it can be mini-
mized the objective function [17]:

J(Z:U, V)= ZZumdz (8)

i=1 k=1

where:
Z=A{z,z, ..z} - is the data set to classify; 9)
U=[uleM [~ s the partition matrix Z; (10)

V={v, v, ..v}, v,e R" - is the centre vector
(clusters) to find;

d,? = ||z - v /|2 - is the Euclidian norm, distance
from the data to the center of the cluster;

(11)

(12)

m € [1,00) — is an exponent that determines the
fuzziness of the obtained cluster; (13)

The steps of the algorithm are:

to select a belonging matrix,

to start the number of clusters,

to calculate the centroid of the clusters:

N
Zul Zk

k=t
i N
k=

(14)

P

1

to calculate the Euclidean distance:

Vi )T (z,-v,)

d, =(z, - (15)
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e to update the belonging matrix:

(16)

kT
3| % )
j=1 djk

The equation (14) gives the value v, which is the
weighted average of the data belonging to a cluster,
where the weights are the belonging functions. This
algorithm presents the following disadvantages:

e the final results depend on the final partition,

o the number of clusters is defined at the beginning
of the algorithm,

o the Euclidean distance method allows detecting
only spherical clusters.

This very last feature is a drawback because the
ideal shape of data grouping is given by an ellipse
(Fig. 4), so the most appropriate algorithm is the one
called ,Gustafson-Kessel” because this one looks for
hyper ellipsoids clusters, which detects the quasi-lin-
ear behavior of data very well.

Gustafson-Kessel

)

fuzzy c-means

1
1 05 a 05 1 1 03 [ 035

Fig. 4. Clusters of different shape [1]
4.3. Gustafson-Kessel (GK) algorithm

This algorithm is found among the adaptive dis-
tance algorithms. This one extends the fuzzy c-means
by choosing a different norm B, for each cluster in-
stead of keeping it constant.

T
dka—( _V,-) B,-(Zk_"i) (17)
where: B, are the possible optimization matrixes of the
objective function, and correspond to the covariance
of each cluster.
Then, the objective function is defined as follows:

J(Z:0,V)= ZZ% ikB,

i=1 k=1

(18)
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In order to obtain a viable solution, B, must be
somehow limited. In this case, we will keep its volume
constant by fixing the determinant of B;:

1

B =[ p det(E) ] E" (19)

where: F, is the covariance matrix for each cluster.
The GK algorithm fits the purpose of identification

because it has the following characteristics:

e the cluster dimension becomes limited by measur-
ing the distance and by the definition of the clus-
ters prototype as a point;

e in comparison to other algorithms, GK is relatively in-
sensitive to the initialization of the partition matrix.

Once we have the groups of data, the next step is
to derive the interference rules which identify a fuzzy
model. To achieve that, there are different types like:
e Mandami: fuzzy rules with fuzzy antecedents and

fuzzy consequents.

o Takagi-Sugeno (TS): fuzzy rules with fuzzy ante-
cedents and consequents that could be expressed in

a simple way like the first order linear model [20].

Because the TS fuzzy model is an effective tool for
the approximation of nonlinear systems based on the
information of inputs and outputs through the inter-
polation of local linear models, which for this case are
determined by the cluster, we use this TS model in
the solution of the identification of the model we are
looking for. The solution consists of projecting the be-
longing of the obtained cluster in the desired space
(Fig. 5), thus obtaining belonging functions from the
cluster.

Xy

Xy

Fig. 5. Extraction of rules by fuzzy clustering [1]
4.4. Takagi-Sugeno Model

In the Takagi-Sugeno model, the consequent rules
are function of the inputs [20]:

R: If xis A, Thenyl. :fi(x), i=1,2,.,K (20)
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where: x € R is the input variable (antecedent), A. is
a multidimensional fuzzy set (cluster), y, is the output
variable (consequent), R, is the its rule and K is the
number of rules of the rules set.

The consequent function can be linearly expressed as:

y,=a'x+b, (21)
Substituting (21) in (20) we get:
R:Ifxis A theny =a"x+b, (22)

Given the outputs of the individual consequents
¥, the global output and the Takagi-Sugeno model is
calculated by:

iﬂi(x)yi

y=B——

> B (x)

i=1

(23)

where: 8 is the commitment degree of the antecedent

of the its rule, calculated as the belonging degree of x

in the interior of the A, cluster:
B(x) = p(x) (24)

normalizing,

X) = wl.(x)
e 2w (x)

therefore the TS model could be interpreted as a quasi-
linear model with dependence on the input x parameter.

(25)

(26)

yztzrl:hi(x)-(af-x+bi)

Fig. 6 and 7 shows an example of a function
y = f(x), represented by four TS rules.

Cluster 4

Takagi-Sugeno model

Rule-based description:

Ifxis A theny=ax+h,
Ifxis A theny=ax+b,

etc...

Fig. 6. Takagi-Sujeno fuzzy clustering [20]
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Fig. 7. GK y TS fuzzy clustering [1]

The antecedent of each rule defines a valid zone
(fuzzy) for the correspondent linear model of the
consequent. The global output function is calculated
through weighting the local linear models.

5. Numerical result
During this work, the toolbox developed by Ba-
buska [1] from the Delft Centre for System and Con-

trol was used. This tool was developed to be worked
on MATLAB (Fig. 8).

término general

1
Zn Z); Zix i
. 1
: 1
Sy 1
_ /,z’ _ N _
it B S Bt A P Sl
2y = i yi iK —
S, g S; Sk
L znl znj ZnK B

Fig. 8. Normalization of a matrix

where: x - is the measure of each variable, S - is the
standard deviation.

The quality of the model is evaluated by calculat-
ing the average error, its equivalent in the used tool-
box corresponds to the percentile variance accounted
(VAF) [1], between the real and the estimated data.
This coeflicient is obtained between two signals:

VAF = 100%-|:1—M:| (27)
Var(yl)

where the value of VAF will be 100% if both signals
are equal. If the values are quite different, the value of
VAF will tend to zero.

For each vehicle, the following procedure was fol-
lowed:
e the matrix is normalized;
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e the matrix is divided in two sections, one for the
identification of the model and the other to carry
out the verification of the obtained model,

o the real acceleration with the obtained model by
multiple linear regression was plotted [22, 14].
This was also used to determine the ride qual-
ity model [24], therefore it will be a reference to
validate our results and the obtained result by the
fuzzy clustering method,

o the VAF coefficient is calculated to determine the
accuracy of the model compared with the real data.

The best results were obtained using the toolbox
with the following parameters:

FM.c =12; % number of clusters,
FM.m =2.8 % fuzziness parameter,
FM.tol =0.1; % termination criterion,
FM.ante =2; % 2 - projected MFS,
FM.cons =2; % 2 — weighted LS,

where: FM is the defined structure by Babuska in
MATLAB for the parameters of the toolbox.

Table 3 presents the obtained results with the fuzzy
nonlinear regression model and the obtained results
with the multiple regression model [24].

Models measurements results with the fuzzy nonﬁﬂig
regression
o | Uni R P Cltering
1 05 76.16 100
2 09 97.52 100
3 10 80.01 95.53
4 12 86.89 100
5 13 87.03 99.17
6 15 78.69 100
7 17 87.19 100
8 19 92.66 100
9 22 86.81 100
10 24 94.7 100
11 34 84.93 100
12 35 70.86 99.07
13 38 77.83 100
14 40 94.15 92.28
15 41 92,5 92.6

Figure 9 shows the measured data of the accel-
eration and the model output data obtained by fuzzy
clustering for the vehicle 05.
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Fig. 9. Plot Y vs. output fuzzy model vehicle 05 and real acceleration curve

It is noticeable that in the table of results there is a
VAF of 100%, which corresponds to the line at 45° of
the Figure and besides faithfully produced accelera-
tion, as shown in the Fig. 9.

In Table 3, it is observed that the worst VAF coefhi-
cient corresponds to the vehicle 40, with a VAF of 92.28.
If we plot the data (Fig. 10), it can be clearly observed
which model did not estimate the data well, leaving it
out of the comparative graphic of 45° (Fig. 10).

mis?

y“lslM

ms’

Y ‘gsthl

This could be due to tuning problems of the model,
either in the sensors installation, different geometric
conditions of the rail or the equipment capacity, etc. To
obtain a general model, all the samples of the 15 vehi-
cles in the matrix were taken, and then a pre-processing
consisting of interchanging the files randomly was per-
formed. Afterwards, the same process on each vehicle
individually was performed and the results were a VAF
of 97.35. It can be graphically observed in Figures 11.
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6. Conclusions

In this article, the main Fuzzy clustering aspects
for the model identification were revised.

Although the obtained results with the linear
multiple regression are satisfactory, comparing the
obtained results, we find that the quality of the fuzzy
model is better in 14 out of 15 analyzed vehicles, and
only one vehicle of the model of linear multiple re-
gression is better with the fuzzy model.

We showed that Fuzzy clustering is a good tool to
approximate nonlinear functions, especially the Tak-
agi-Sugeno model.

This regression model can be integrated into the
process for decision support in the maintenance of
rail-vehicle interface to reduce the cost associated
with the maintenance work, human resources and the
increase of system reliability.

Due to the reasons explained before, when it comes
to identifying a nonlinear model, we recommend the
fuzzy model to be used in future implementations
among the SPD.
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toreo multidimensional de la interfase via — vehi-

Nieliniowy model regresji w kolejnictwie

Streszczenie

Przenosny system diagnostyczny — SPD ocenia aspekty bezpieczenstwa i jakosci biegu pojazdéw kolejowych
oraz stanu technicznego pojazdu kolejowego. Celem niniejszego artykulu jest oszacowanie nieliniowego mo-
delu regresji zwigzanego z zachowaniem jakosci jazdy, przez zastosowanie rozmytego algorytmu klastrowania
danych geometrycznych stanu technicznego pojazdu kolejowego i pomiary quasi-statyczne przyspieszen po-
przecznych pojazdow szynowych. Bedzie to ocena poréwnawcza zmierzonego realnego przyspieszenia z przy-
spieszeniem obliczonym skonfigurowanego modelu dla 15 réznych pojazdéw. Uzyskane wyniki beda poréwna-
ne z wynikami modelu liniowej regresji wielokryterialnej, ktore byly dotychczas w tym celu stosowane.

Stowa kluczowe: model regresji, kolejnictwo, zbiér rozmyty

Hennueitnas MOJ€C/Ib PErpeCCUN B )KEIE3IHOJOPOKHOM TPpAaHCIIOPTE

Pe3rome

[TopraTuBHas cucrema guarnoctuky — [IC]] - olleHMBaeT acrieKThl 6€30IIaCHOCTM ¥ KadyeCTBa ABVKEHNA JKe-
JIe3HOJOPO>KHBIX IOABVKHBIX €IMHUI] M TEXHMUECKOTO COCTOSHNUA eUHMUIIBI OfIBVDKHOTO cocTaBa. Llenbio
3TOJI CTaTb!U ABJIAETCA OlleHKa HeJIMHeITHOI MOJIe/IU perpecciit CBA3aHOI C COXpaHeHNeM KauecTBa ABVDKEHM
Yyepe3 yHnoTpeb/ieHye HeYeTKOTO aITOPUTMa KIacTepyu3alyy TeOMeTPUYECKUX JAHHBIX, TEXHUYECKOTO COCTO-
SHUA eIVHUIIBI TOABVYKHOTO COCTaBa M KBa3U-CTATUCTUYECKUX M3MePeHMII TIONIePeYHOT0 YCKOPEHNs efHNL]
HOZIBVKHOTO COCTaBa. JTO OyleT CpaBHUTE/IbHAsI OLleHKA M3MEPEeHHOTO PealbHOTO YCKOPEHUS C YCKOpeHM-
€M pacYMTaHHBIM MOJe/ CKOH(pUIYPOBAaHHOI I/ 15 pasHBIX eMHMUIL IIOABIDKHOTO cocTaBa. [lonydeHHbIe
pe3ynbTaThl OYAYT IOTOM CPaBHEHBI C pe3y/IbTaTaMy MOJE/IM TMHETHOI perpeccuyt HeCKOIbKUX KPUTEepUEB,
KOTOpBIE [IO CUX IOP UCIIO/Ib30BANINCD JJIS 3TOM LeN.

KnroueBsie cmoBa: MOJ€NIb perpeccnu, )KCTICSHO,HOPO)KHI)II‘/‘[ TPaHCIIOPT, HEYETKOE€ MHOXXECTBO



