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Analysis of Turnouts with Non-linear Curvature of Diverging Track 
for Diff erent Train Running Speeds

Władysław KOC1

Summary
Th e paper deals with the issue of shaping variable curvature in diverging track of a railway turnout. A solution without a circu-
lar arc in the central zone, containing two zones of non-linear curvature with the same length and zero curvature values at the 
end points, was adopted as a model, on the basis of previously conducted dynamic tests. Th e optimum type of curvature was 
selected from the perspective of the kinematic conditions. An analytical record of the curvature and the tangent inclination 
angle along the diverging track and of the Cartesian coordinates of the diverging track are presented. Th e obtained theoreti-
cal correlations were verifi ed by computing. Verifi ed correlations were used to determine geometrical parameters of some 
turnouts with non-linear curvature of the diverging track for diff erent assumed train running speeds on it. Th e criterion was 
to minimize the length of the entire turnout with a predefi ned ordinate of the end of its diverging track.

Keywords: railway turnouts, diverging track, curvature modelling

1. Introduction
Railway turnout matters have been discussed in

many publications [15, 7, 15, 18, 2021], especial-
ly in those dealing with high speed railways [6, 17, 
2223]. Turnout construction itself is permanently 
changing, however, in an ordinary turnout, the typi-
cal geometrical shape of the diverging track is a single 
circular arc without transition curves. Such a solution 
is not used on track sections without turnouts and 
this results in the necessity to restrict train running 
speeds. Speed restrictions arise from the presence of 
locations with abrupt leap changes of the ordinates 
on the curvature graph at the beginning and end of 
the turnout. Recently in some countries, especially in 
high speed railways, attempts to soft en the curvatures 
in such locations have taken place. Th is is achieved 
by introducing so-called “clothoid sections”, on both 
ends of the circular arc, on which curvature changes 
linearly, frequently however without reaching zero 
values at extreme points [17, 19, 2223], as shown in 
Figure 1. Th eoretical analysis for such a case has been 
conducted in one paper [9]. An alternative solution 
applying sections with non-linear curvature is pro-
posed in another study [12] (see Fig. 2). 

Fig. 1. Example graph representing diverging track curvature 
of a turnout with linear sections (R1 = 16 000 m, l1 = 55 m, 

R2 = 6000 m, l2 = 60 m, l3 = 65 m, R3 = 25 000 m) 
[own elaboration]

Th e length of the turnout diverging track is split 
into three zones: 
 l1 length of the start zone with curvature changing

from the k1 value (at point A) to the k2 value (point B),
 l2 length of the middle zone with a constant curva-

ture value k2 (between points B and C),
 l3 length of the end zone with curvature changing

from the k2 value (point C) to the k3 value (point D).
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Fig. 2. Example graph representing diverging track curvature 
of a turnout with non-linear sections (R1 = 16 000 m, l1 = 55 m, 

R2 = 6000 m, l2 = 60 m, l3 = 65 m, R3 = 25 000 m) 
[own elaboration]

Kinematic parameters determine the circular arc 
radius value (in other words, curvature k2) as well 
as the lengths of sections with variable curvature for 
a predefi ned train running speed. Of course, diff erent 
variants of solutions are possible, linked with curva-
ture values and the lengths of individual zones. Th is 
also allows free determination of the turnout slope 
and its end ordinate [11].

2. Searching for the optimum solution 

At this point, a  key question should be asked – 
which set of turnout characteristic values, i.e. k1, k2 
and k3 as well as l1, l2 and l3, is optimal in a  certain 
situation? Th e list of possible variants is signifi cantly 
restricted by dynamic analysis, which has been shown 
in some studies [13, 14]. A  dozen or so application 
cases, comprising sections with linear and non-linear 
curvature, are considered. For non-linear curvature, 
a condition was set to keep a permitted value of the 
increase in acceleration as well as an increase of this 
value by 50%. Figures 3 and 4 show example graphs 
of oscillation movements for turnout diverging track 
sections with linear curvature, with non-zero and 
zero curvature values at the start and end points. 

Fig. 3. Graphs of acceleration of oscillation movements for linear 
curvature sections and the values k1 = k3 = 1/8000 rad/m [14]

Fig. 4. Graphs of acceleration of oscillation movements for linear 
curvature sections and the values k1 = k3 = 0 [14]

As can be seen, setting zero curvature values at 
the start and end points ensures incomparably lower 
values of dynamic impact. Th is fi nding has been ful-
ly proven for cases applying non-linear sections, for 
which the obtained values are signifi cantly lower. Th e 
optimum solution, i.e. the one which is characterised 
by lower values of dynamic impact (accelerations), 
is the case with non-linear curvature sections of the 
same length, zero curvature at the start and end of 
the turnout, which respects the binding value of the 
permissible increase of acceleration. Figure 5 shows 
a graph representing curvature along diverging track 
for this exact case. 

Fig. 5. Optimum graph of curvature along diverging track 
of a turnout with non-linear sections (k1 = 0, l1 = 86 m, 

k2 = 1/6000 rad/m, l2 = 12.484 m, l3 = 86 m, k3 = 0) 
[own elaboration]

In comparison with the model graphs shown in 
Figures 1 and 2, the level of steering values went down 
by half. Here it is possible to change the subdivision of 
the length of the turnout diverging track into zones: 
 l1 length of the start zone with curvature changing 

non-linearly from zero to the value k = 1/R,
 l2 length of the middle zone with a constant curva-

ture value k = 1/R,
 l3 = l1 length of the end zone with curvature chang-

ing non-linearly from the value k = 1/R to zero.

Th e ideal curvature distribution shown in Figure 5 
formed the subject of detailed analysis conducted in 
one work [10]. It has demonstrated that:
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 enlarging the radius R results in the ability to min-
imize the lengths of the sections with non-linear 
curvature, in consequence leading to shortening of 
the whole turnout and minimizing its end ordinate 
and slope 1 : n (namely an increase in the n value),

 introducing a relatively short middle zone, with set 
high R values, can be seen as an optimal solution; 
its application gives a shorter overall length of the 
turnout (of course, that may not be deemed im-
portant, disregarding the required diverging track 
end ordinate),

 obtaining an assumed end ordinate when introduc-
ing the middle zone (i.e. section of a circular arc) in 
each case causes elongation of the entire turnout in 
comparison with variants without this zone; that is 
why such a solution does not seem sensible.

 the ability to change the turnout slope by achieving 
the value n as an integer appears to be a more com-
plex issue due to the presence of a lower number 
of variable parameters, which may be manipu-
lated; in most cases this starts to be possible only 
aft er elimination of the middle zone and assuming 
a slightly larger end ordinate. 

Th e case without a circular arc zone (i.e. l2 = 0), on 
the basis of the above statements, has been accepted as 
an optimum solution. At the same time, it was neces-
sary to introduce the symbol l1 = l3 = lk.

3. Analytical solution of the problem

Curvature modelling on the length of the turnout di-
verging track allows its analytical notation to be created 
in the form of the function k(l), where the l parameter 
defi nes the location of a certain point on the length of 
the curve. Coordinate equations for the sought connec-
tion can be written down in a parametrical form [8]:

 
( ) cos ( )dll lx    (1)

 
( ) sin ( )dll ly    (2)

  
Th e tangent inclination angle function Θ(l) is de-

fi ned by the formula

 
( ) ( )dl k l l    (3)

3.1. Problem solution for the start zone 

Applying sections with non-linear curvature 
means that in a start zone (for 0, kl l ) the follow-
ing border conditions take eff ect:
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while the diff erential equation is

 k(4)(l) = 0, (5)

where the numerical coeffi  cient C ≥ 0.

Following the parametrical equation is obtained as 
a result of solving the diff erential problem (4), (5):
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while the tangent inclination angle function Θ(l) is 
described by the relationship
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At the end of the start zone   6
12k k

Cl kl 
 .

Fig. 6. Example curvature graphs on the length of the new 
transition curve for chosen coeffi  cient C values (R = 1000 m, 

lk = 100 m) [own elaboration]

Figure 6 shows an example of the curvature graphs 
in the length domain for chosen values of the C coeffi  -
cient. As can be seen, monotonic fl ow of the curvature 
is characterised by curves for 0;3C . Th e curve for 
C = 0 has the soft est fl ow, however – similarly as for 
other curves – fulfi lment of the requirement to re-
spect permissible increase of acceleration requires its 
elongation in comparison to a  reference curve with 
linear curvature.

However, when choosing the optimum curve from 
the analysed curves, one should fi rst apply the crite-
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rion of the minimum required length. Th is length is 
determined – aside from train running speed – by the 
permissible increase of acceleration, which is directly 
linked with the derivative of the curvature. 

 
2

2 3

2(2 3) 3( 2)'( )
k k k

C C Ck l l l
Rl Rl Rl

 
    (8)

Figure 7 shows graphs of the derivative of the cur-
vature on the length of the transition curve, for which 

0;2,5C .

Fig. 7. Example graphs of the derivative of the curvature on the 
length of the new transition curve for chosen values of the C 

coeffi  cient (R = 1000 m, lk = 100 m) [own elaboration]

As the derivative k´(l) described by equation (8) 
changes in length domain, its maximum value counts. 
For the coeffi  cient 0;1,5C , the maximum value 
of k´(l) = k´(l0), where the location of the l0 point, in 
which the maximum of the function k´(l) appears, is 
derived from the condition 

02 3

2(2 3) 6( 2) 1''( ) 0
2k k

C Ck l l
Rl Rl
 
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which results in
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Th e l0 value determined by equation (9) substitut-
ed in equation (8) determines the maximum of the 
k´(l) function.
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 (10)

For C > 1.5, the l0 value determined by equation 
(10) does not fulfi l requirements of the task (obtained 
l0 > lk or alternatively obtained l0 relates to the func-

tion minimum). However, max k´(l) = k´(0) as k´(l) 
reaches its maximum value at the start point.

Th e necessary elongation grade of the sought tran-
sition curve in comparison with the basic clothoid, 
associated with the necessity to preserve permissible 
increase of acceleration, determines the ratio of the 
max  k´(l) to the derivative k´(l)lin appearing on the 
linear curvature, which is a constant value described 
by the formula:

 

1'( )lin
k

k l
Rl

  (11)

For C = 0, the value of the max k´(l) / k´(l)in = 3/2. 
Th erefore, due to permissible increase of acceleration, 
length of the transition curve has to be longer by 50% 
than for the linear curvature. On the other hand, for 
C = 1, the value of the max k´(l) / k´(l)in = 4/3, which 
means that the length of this curve has to be longer 
than the clothoid only by 1/3. Consequently, per-
formed analysis shows that the optimum solution is 
the one with the coeffi  cient C = 1. Th is leads to follow-
ing equations for the functions k(l) and Θ(l):
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Th e function Θ(l) enables the determination of 
parametrical equations x(l) and y(l) for this zone by 
using relationships (1) and (2). Th e Maxima program 
[16] was used for expanding the functions cos Θ(l) 
and sin Θ(l) into Maclaurin series. Th en, individual 
words were integrated.
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At the end of the zone, the tangent inclination angle is:

  7
12k kl kl  .



Analysis of Turnouts with Non-linear Curvature of Diverging Track for Diff erent Train Running Speeds 111

3.2. Problem solution for the end zone

In the end zone (for ;2k kl l l ) the following bor-
der conditions take eff ect:
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and the diff erential equation (5). Th e obtained result 
of the diff erential problem (5), (16) is the following:
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Th e tangent inclination angle equation has the fol-
lowing form 
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(18)

At the end of the zone, the value of the angle Θ(l) 
equals:

  62
6k k

Cl kl 
 .

For the agreed coeffi  cient C = 1, the equations k(l) 
and Θ(l) are as follows:
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At the end of the curve, the tangent inclination angles:

  72
6k kl kl  .

Parametrical equations were received aft er ex-
panding the functions cos Θ(l) and sin Θ(l) into Tay-
lor series using the Maxima program [16] and inte-
grating individual words:
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Basic turnout dependency applies:

 
  1tan 2 kl n

   (23)

4. Scope of conducted analysis 

Th e theoretical dependencies presented above 
are subject to calculation verifi cation – they are used 
to derive geometrical parameters for a  few turnouts 
with variable curvature of the diverging track for 
the assumed train running speeds Vdiv = 40, 80 and 
120 km/h on this track. If a commonly assumed as-
sumption is taken that the train speed on the turnout 
diverging track equals half of the train speed on the 
track section without turnouts (in other words, on the 
main track), then the last given value applies to high 
speed railways. It is assumed that such turnouts are 
foreseen for connecting parallel tracks with a distance 
between track centres equal to 4 m (without a straight 
insert), giving the end ordinate of their diverging 
track equal to 2 m. 

Minimum values of the parameters occurring on 
the railway turnout diverging track are determined 
for the assumed train running speed: radius of the cir-
cular arc R in the middle of the arrangement as well as 
the lengths lk of the sections with variable curvature. 
Th ey are limited by permissible values of respective 
kinematic parameters. 

Th e minimum radius of the circular arc in the 
middle part is calculated using the formula

 

2
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1

3.6 dop

VR
a

   
 

 (24)

where aper means the permissible value of the uncom-
pensated acceleration.

Taking into account equations (12) shows that on 
the length of sections with non-linear curvature (for 
the coeffi  cient C = 1) lateral acceleration a(l) exists, as 
described by the equation
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Th e value of the increase ( )
3.6 d
V d a l

l
   of accel-

eration changes in the length domain and, therefore, 
the following condition is in force:

3
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where ψper means permissible increase of acceleration.

From the analysis conducted in point 3.1, it ap-
pears that, in the case of the investigated curve, the 
value ψmax occurs at the point l0 = lk / 3; and, therefore, 
fi nally should be:

3

max 3.6
4
3 d

k
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V k
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 

 .

Th e formula for the minimum length of the sections 
with non-linear curvature is therefore the following:
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Aft er determining the coordinates of the end of 
the diverging track x(2lk) and y(2lk), as well as the tan-
gent inclination angle Θ(2lk), it becomes possible to 
determine the location of the middle of the turnout 
as well as the length of its through track. Th e turnout 
middle point lies on the axis of the through track at 
the distance:
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from the beginning of the turnout, on the other hand, 
the length of the through track is 
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5. Establishing geometrical parameters

Table 1 contains a  consolidated sheet with geo-
metrical parameters of the turnout diverging track 
for chosen train running speeds during an iterative 
approach to the end ordinate 2 m. Th e parameter ldiv 
represents the length of the turnout diverging track 
(ldiv = 2 lk).

Table 1
Sheet with generated variants’ characteristic values for chosen train running speeds during an iterative approach to the end 

ordinate 2 m
Vdiv [km/h] R [m] lk [m] ldiv [m] lthr [m] Θ(ldiv) [rad] n x(ldiv) [m] y(ldiv) [m]

40

350 18 36 36.004 0.06000   6.64666 35.968    1.187
290 21 42 42.009 0.08448 11.80856 41.927    1.949
290 21.27 42.54 42.550 0.08557 11.65794 42.464   1.9998
290 21.28 42.56 42.570  0.08561 11.65244 42.484   2.0017
290 21.271 42.542 42.552 0.08578 11.65739 42.466   2.00002
290 21.272 42.544    42.554 0.08558 11.65684 42468   2.00021

80

  600 82 164  164.129 0.15944   6.21854 162.985   14.327
1200 41 82   82.004 0.03986 25.07382 81.968     1.797
1200 43.25 86.50   86.505  0.04207 23.76798 86.463   1.9999
1200 43.26 86.52   86.525  0.04206 23.76248 86.483   2.0009
1200 43.251 86.502   86.507 0.04205 23.76743 86.465   2.00002
1200 43252 86.504    86.507 0.04208 23.76688 86.467   2.00011

120

1500 110     220  220.050 0.08556 11.65978 219.607    10.341
2600 64 128  128.003 0.02872 34.81186 127.974      2.021
2700 61 122  122.003 0.02636 37.93032 121.979      1.768
2650 63 126 126.003  0.02774 36.04518 125.976      1.922
2650 64.26 128.52 128.523  0.02829 35.33804 128.495    1.9995
2650 64.27 128.54 128.543  0.02830 35.33254 128.515    2.0001
2650 64.267 128.534 128.537 0.02829 35.33419 128.509   1.99994
2650 64.268 128.536 128.539 0.02829 35.33364 128.511   2.00002
2650 64.269 128.538  128.541 0.02829 35.33309 128.513   2.00006

[Own elaboration].

d
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5.1. Turnout for the speed of Vdiv = 40 km/h

Th e value Rmin = 145.243 m is obtained for the as-
sumed train running speed Vdiv = 40 km/h, assuming 
a permissible increase of uncompensated acceleration 
with the value aper = 0.85 m/s2, and applying formula 
(24). In the following performed calculations, the ra-
dius of the circular arc R = 350 m is assumed to be the 
initial one, as this Rmin is a very small value, which cre-
ates problems for track negotiation by rolling stock.

Th e condition stating that min  lk  =  17.419  m is 
received by assuming the permissible increase of ac-
celeration ψper = 0.3 m/s3 (as for individual transition 
curves with linear curvature) and applying formula 
(26). In the performed calculations, the lengths of the 
sections with non-linear curvature lk = 18 m are as-
sumed to be initial ones.

For the assumed R = 350 m and lk = 18 m, a turn-
out is received with the length of 36.004 m, slope 
1:16.64666 and the end ordinate of the diverging track 
equal to 1.187 m. Th us, the end ordinate diverges 
from the required value of 2 m. Th e radius R = 290 m 
and associated length lk = 21 m are achieved by apply-
ing an iterative approach, and give the end ordinate 
equal to 1.949 m. Th en, further correction (in other 
words, enlarging) of the lk value takes place, keep-
ing the radius R  =  290 m, and fi nally results in the 
required end ordinate. Finally, the accepted geometri-
cal arrangement of the turnout diverging track has the 
radius R = 290 m and the length of the sections with 
variable curvature lk = 21.271 m. Turnout slope equals 
1:11.65739, and the length of the through track equals 
42.542 m.

5.2. Turnout for the speed of Vdiv = 80 km/h

Th e value Rmin = 580.973 m is obtained for the as-
sumed train running speed Vdiv  =  80 km/h, by ap-
plying formula (24). Th us, the circular arc radius 
R = 600 m is assumed to be the initial one for the fol-
lowing performed calculations. Th e condition that the 
min lk = 81.288 m is obtained on the basis of formula 
(26); the lengths of the sections with non-linear cur-
vature lk = 82 m are assumed to be initial ones.

For the assumed initial values R  =  600 m and 
lk  =  82  m, a  turnout is received with the length of 
164.129 m, slope 1:6.21854 and the end ordinate of 
the diverging track equal to 14.327 m. Th us, the end 
ordinate diverges from the required value of 2 m. It 
turns out that the basic way to minimize it is to enlarge 
the radius R. Th is circumstance is very benefi cial and, 
at the same time, gives the possibility to minimise the 
lengths of the sections with variable curvature in ac-
cordance with condition (26). Th e radius R = 1200 m 
and the associated length lk = 41 m are achieved by 
applying an iterative approach, and give the end ordi-

nate equal to 1.797 m. Th en, in order to enlarge this 
ordinate, further correction (in other words, enlarg-
ing) of the lk value takes place, keeping the radius 
R = 1200 m, which results in the required end ordi-
nate. Finally, the accepted geometrical arrangement of 
the turnout diverging track has the radius R = 1200 m 
and the length of the sections with variable curvature 
lk = 43.251 m. Turnout slope equals 1:23.76743, and 
the length of the through track equals 86.507 m.

5.3. Turnout for the speed of Vdiv = 120 km/h

Th e value Rmin = 1307.19 m is obtained for the train 
running speed Vdiv = 120 km/h, by applying formula 
(24). Th us, the circular arc radius R = 1500 m is as-
sumed to be the initial one for the following calcula-
tions. Th e condition that the min lk  =  109.739 m is 
obtained simultaneously on the basis of formula (26). 
Th e lengths of the sections with the non-linear curva-
ture lk = 110 m are assumed to be initial ones.

For the assumed initial values R  =  1500 m and 
lk  =  110 m, a  turnout is received with the length of 
220.05 m, slope 1:11.65978 and the end ordinate of 
the diverging track equal to 10.341 m. Because the 
end ordinate diverges from the required value of 
2 m, it has to be lowered by enlarging the radius R. 
Th is leads to shortening of the lengths of the sections 
with variable curvature in accordance with condi-
tion (26). Th e radius 2600;2700R  m and associ-
ated length 61;64kl   m are achieved by applying 
an iterative approach, for which the end ordinate is 

( ) 1,768;2,021zwry l   m. Th e radius R  =  2650 m is 
assumed in order to achieve the required end ordi-
nate. Th e respective value lk  =  63 m, and respective 
end ordinate is 1.922 m.  Th e required end ordinate 
is achieved by correcting (in other words, enlarging) 
the lk value. Finally, the accepted geometrical arrange-
ment of the turnout diverging track has the radius 
R = 2650 m and the length of the sections with vari-
able curvature lk  =  64.268 m. Turnout slope equals 
1:35.33364, and the length of the through track equals 
128.539 m.

5.4. Sheet with determined solutions

Table 2 contains characteristic values which 
were determined for turnouts with the end ordinate 
2 m and dedicated for the speeds Vdiv  =  40, 80 and 
120 km/h.

Figure 8 shows a  set of curvature graphs on the 
lengths of the diverging tracks of individual turnouts. 
Figure 9 shows graphs of horizontal ordinates. Due to 
non-comparative scaling in Figure 9, tangents leading 
from the end of diverging tracks cross those tracks on 
their lengths, which of course does not take place in 
reality. 
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6. Practical verifi cation attempt
Th e presented turnout diverging track shaping 

concept is an entirely new solution, which up to now 
has not been applied anywhere in practice. Th is con-
cept is therefore a  proposal, which should be pro-
moted in order to enable its verifi cation in the future. 
Elimination of regions with abrupt changes in curva-
ture at the beginning and end of the turnout diverging 
track is a basic advantage of the solution. It arises un-
ambiguously from assumptions adopted for the deter-
mination of the curvature equations. However, as the 
described turnout does not exist yet, it is not possible 
to assess its operational reliability from the construc-
tion point of view [3]. It is only possible to undertake 
an attempt to analyse switch blade positions in the rail 
vehicle wheels striking start zone. 

Figure 10 shows the outline of a curved switch blade 
and closure rail position in an example turnout with 
diverging track variable curvature and in a  conven-
tional turnout with diverging track in the form of a cir-
cular arc. Both turnouts enable passing with the speed 

Vdiv = 40 km/h. Geometrical parameters of the fi rst one 
are given in Table 2 (for the radius R = 290 m). Th e sec-
ond one is a conventional turnout Rz 300-1:9.

Fig. 10. Outline of the curved switch blade and closure rail 
position in an example turnout with soft ened curvature of the 

diverging track and a traditional turnout (in a non-comparative 
scale) [own elaboration]

As can be seen, the diff erence between turnouts is 
obvious and consistent with expectations. Th e turn-

Table 2
Characteristic values determined for turnouts dedicated for the speeds Vdiv = 40, 80 and 120 km/h with the end ordinate 2 m

Vdiv [km/h] R [m] ldiv [m] lthr [m] Θ(ldiv) [rad] n x(ldiv) [m] y(ldiv) [m]
40 290 42.542 42.552 0.08578  11.65739 42.466     2.000
80 1200 86.502 86.507 0.04205  23.76743 86.465     2.000

120 2650 128.536 128.539 0.02829  35.33364 128.511     2.000
[Own elaboration].

Fig. 9. Graphs of the horizontal 
ordinates of diverging tracks of 

analysed turnouts [own elaboration]

Fig. 8. Curvature graphs on the lengths 
of the diverging tracks of analysed 

turnouts [own elaboration]
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out with soft ened curvature of the diverging track has 
an elongated switch blade and closure rail adherence 
zone and gently growing horizontal ordinates. Th is 
should translate into better track negotiation by roll-
ing stock wheels, ensuring lower dynamic impact, 
even running and slower rails wear process in diverg-
ing track. Th ese statements arise from logical pre-
sumptions and should stack up in real circumstances. 
Practical verifi cation of the advantages should be 
based on observing rails wear in diverging tracks of 
such shaped turnouts.

7. Conclusions

Diverging track of a typical railway turnout (of the 
ordinary points) is a single circular arc without tran-
sition curves. As a result, there are places with abrupt 
leap changes of the ordinates on the curvature graph 
at the beginning and end of the turnout. Recently in 
some countries, attempts to soft en the curvature graph 
in such locations have taken place. So-called “clothoid 
sections” are introduced on both ends of the circular 
arc, on which curvature changes in a linear way.

It was demonstrated in some papers [11, 12], as 
a  result of dynamic analysis, that optimum proper-
ties are possessed by turnout diverging track with 
non-linear fl ow of the curvature in the start zone and 
end zone and zero curvature values at extreme points 
of the geometrical arrangement. At the same time, 
doubts have arisen as to whether applying so-called 
“clothoid sections” with non-zero curvature values at 
the start and end points of the diverging track, which 
takes place in construction practice, is reasonable.

Th is work shows a  problem-solving analytical 
method with a general and complete character. A so-
lution without a circular arc in the central zone, com-
prising two zones of non-linear curvature with the 
same length and zero curvature values at extreme 
points, was adopted as a  model. Th e optimum type 
of curvature was selected from the point of view of 
the kinematic conditions. An analytical record of the 
curvature and of the tangent inclination angle along 
the diverging track and of the Cartesian coordinates 
of the diverging track are presented.

Th e obtained theoretical dependencies are sub-
jected to calculation verifi cation. Th ey were used to 
determine geometrical parameters for a  few turn-
outs with variable curvature of the diverging track 
for the assumed train running speeds Vdiv  =  40, 80 
and 120 km/h on it. Th ose turnouts are foreseen for 
connecting parallel tracks with the distance between 
track centres equal to 4 m (without a straight insert). 
Th e criterion was to minimize the length of the entire 
turnout with a predefi ned ordinate of the end of its 
diverging track.
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