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Droppers’ Stiff ness Infl uence on Dynamic Interaction Between 
the Pantograph and Railway Catenary

Danuta BRYJA1, Adam HYLIŃSKI (POPIOŁEK)2

Summary
Droppers connecting the contact wire and messenger wire of the railway catenary are characterized by zero or negligible 
compressive stiff ness, hence they become slack under compression that is similar to bars’ buckling. Th e paper presents a nu-
merical analysis of the infl uence of droppers slackening phenomenon on the dynamic interaction between the pantograph 
and catenary. Th e analysis is based on a simulation method presented by the authors in previous papers, in which the catenary 
is modelled as a complex cable system. In this paper, the simulation method is modifi ed by introducing the residual compres-
sive stiff ness of droppers that is assumed as a given percent of tensile stiff ness. Modifi cation leads to geometrically non-linear 
equations of motion of the pantograph-catenary system. Two diff erent algorithms for solving the problem of non-linearity are 
proposed, in both of them the Newmark numerical integration method is applied. Results of dynamic response simulations 
performed for diff erent values of residual compressive stiff ness of droppers are presented and compared. It is shown that the 
contact wire does not cooperate with the messenger wire in a large area around the pantograph when the compressive stiff -
ness of droppers is assumed zero. As a result, the pantograph moving at high speed induces severe vibrations of the catenary. 
It is also shown that droppers should be designed to have the residual compressive stiff ness equal to at least one percent of 
their tensile stiff ness. Th is is suffi  cient to ensure an appropriate cooperation between messenger wire and contact wire, which 
is demonstrated by simulation results fulfi lling requirements given in the standard PN-EN 50318: 2002.

Keywords: railway catenary, pantographs, droppers’ slackening, geometrical non-linearity, vibration simulation, valida-
tion of simulation method

1. Introduction
In recent years, a  growing interest in numerical

methods for simulation of dynamic interaction be-
tween railway catenary and moving pantographs can 
be observed in global [6, 11, 13] and Polish literature 
[9, 14]. More and more advanced simulation methods 
are being proposed, which increasingly well refl ect 
real catenary operational conditions. However, in 
most cases authors apply a similar approach assuming 
the FEM modelling of all catenary structural elements 
(messenger wire, contact wire, droppers, steady arms, 
support structures), with the use of Euler’s beam el-
ements [13]. Such an approach takes into account 
the fl exural stiff ness of messenger wire and this of 
contact wire, which are negligible while considering 
the fact that the length of the multi-span catenary is 

many times bigger than characteristic cross-sections 
of both wires. At the same time, such an approach ig-
nores a  specifi c nature of vibrations of the catenary 
which constitutes a  complex cable system. Th at will 
be shown below in the numerical part of this paper.

A counterfactual catenary modelling method based 
on the vibration theory of fl exible cables and the La-
grange – Ritz method has been proposed by the au-
thors of this paper. Th e fi rst version of the method 
was published in [5] where a  detailed description of 
the computational model for the pantograph-catenary 
system is presented including a step-by-step derivation 
of equations of motion. Th e proposed model assumes 
that droppers connecting the multi-span messenger 
wire and the contact wire are zero-mass elastic ele-
ments which transfer tensile forces but do not transfer 
a  compression. Th ey behave therefore as non-linear 
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springs of the “stop” type [7], which have diff erent stiff -
ness (non-zero and zero, respectively) depending on 
the relative displacement of both spring ends.

Th e phenomenon of non-transferring the com-
pressive forces by droppers arises from their design. 
Th ey are usually fl exible cords made of individual 
copper wires – for example, the catenary utilised by 
PKP uses droppers of the L10 type with a cross-sec-
tion of 10 mm2, with double strand 7×7 wires having 
a nominal diameter of 0.51 mm. Under compressive 
forces, such cords lose their shape – they become slack 
which is similar to bar buckling. During the panto-
graph passage, the contact wire moves up at a contact 
cross-section and a  certain distance away from it, 
which is due to the contact force exerted by the pan-
tograph head. Simultaneously, lower ends of droppers 
move up causing droppers’ slackening, that results in 
a temporary disconnection of the messenger wire and 
the contact wire, near the contact cross-section. Th en, 
aft er the pantograph passage, the contact wire moves 
alternately down and up experiencing free vibrations. 
Each down movement tenses droppers and causes 
a return to the state in which the contact and messen-
ger wires are connected.

Taking the described phenomena into account in 
the catenary computational model leads to a geomet-
rically non-linear problem, consequently, the numeri-
cal integration scheme of the equations of motion be-
comes more complicated. Th e authors have proposed 
in [2] a  method for solving non-linear equations of 
motion, which is based on an iterative determina-
tion of the non-linear forces compensating the infl u-
ence of droppers up to zero, for the droppers which 
are identifi ed as subjected to compression in a given 
calculation step. Identifi cation of such droppers is 
performed on the basis of an observation of the rela-
tive displacement of both ends of each dropper. Th e 
compressive stiff ness of slackening droppers equals 
zero if the compensating forces are determined with 
an appropriate accuracy. A similar approach was used 
by Pombo in [1, 13] where it is suggested, without 
precise analysis, that the compensating forces should 
be calculated in such a way to leave the residual com-
pressive stiff ness of droppers.

Regarding the above, the main aim of this paper was 
defi ned as an analysis of the infl uence of the droppers 
residual compressive stiff ness on the dynamic interac-
tion between the pantograph and railway catenary. Th e 
analysis is based on a previously elaborated simulation 
method, modifi ed to consider the residual compressive 
stiff ness of droppers which become slack. Th is residual 
stiff ness is defi ned as an appropriate percent of dropper 
tensile stiff ness, which will be achieved by step-by-step 
reduction of the initial value equal to tensile stiff ness. 
Within the fi rst step of the analysis, dynamic responses of 
the pantograph-catenary system are determined for dif-

ferent values of the dropper compressive stiff ness: from 
initial value characteristic for the tensile mode (zero stiff -
ness reduction for compression, all droppers are linearly 
elastic regardless of their relative displacements) to zero 
(complete stiff ness reduction). Th e second step of the 
analysis takes into account cases when the dropper com-
pressive stiff ness is equal to a  low percentage of initial 
(tensile) value. Such highly reduced stiff ness refl ects the 
residual compressive stiff ness which can be applicable 
for droppers subjected to slackening [1]. For the purpose 
of verifi cation of the obtained results, an alternative pro-
cedure for solving the non-linear equations of motion is 
elaborated and the results obtained by both algorithms 
of the simulation method are compared.

Th e obtained results show that assuming drop-
pers’ compressive stiff ness equal to zero, in the case 
when the catenary model is based on a fl exible cable 
theory, signifi cantly infl uences dynamic responses 
of the pantograph-catenary system. For high panto-
graph speeds, the contact wire practically does not 
cooperate with the messenger wire and experiences 
signifi cant vibrations. It is shown that assuming the 
residual compressive stiff ness equal to one percent of 
tensile stiff ness is adequate for ensuring an appropri-
ate cooperation between the both wires of catenary, 
which is demonstrated by simulation results fulfi lling 
standard requirements [12].

2. Simulation method

Th e computational model of pantograph-catenary 
system, as well as the method for simulating the dy-
namic interaction between the overhead contact line 
and moving pantographs, which are utilised in nu-
merical analysis presented in this paper, have been 
precisely described and tested by the authors in [25]. 
All numerical tests presented in those papers were 
conducted with a  simplifi ed versions of the simula-
tion method. In [2], which was dedicated to the in-
fl uence of damping on the dynamic system response, 
simplifi cation was based on the assumption that 
droppers are linearly elastic springs – i.e. they trans-
fer both compressive and tensile forces. Two works 
[3, 4], take the non-linear behaviour of droppers into 
account but only one iterative step is used in the pro-
cedure applied for calculating a vector of non-linear 
forces compensating the infl uence of droppers sub-
jected to compression. Th is simplifi ed variant was 
used in  [12] to conduct an initial validation of the 
simulation method, in accordance with standard re-
quirements [4]. Such validation is necessary in order 
to accept use of the elaborated method in engineering 
practice. In turn, the paper [3] presents an example of 
pantograph-catenary system vibration analysis in the 
case of two moving pantographs.
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Th is work utilises the full version of the simulation 
method described in [2], which is based on the com-
putational model presented in [5]. Th e mathematical 
description of the method is slightly modifi ed in or-
der to enable the goal of the research to be achieved. 
General catenary model assumptions are the same as 
in [5], i.e.: (i) the catenary consists of one contact wire 
and one messenger wire (see Fig. 1), (ii) the catenary 
section being analysed is composed of a given number 
of spans, (iii) the multi-span messenger wire is repre-
sented by a fl exible cable with a parabolic route within 
each individual span (in an unloaded state), and is 
slidingly supported on rigid supports, (iv) the contact 
wire is treated as a straight cable (i.e. string). Both the 
messenger and contact wire are tensed, which is pro-
vided by special devices dedicated for catenary ten-
sioning.

Fig. 1. Railway catenary scheme [own study]

Th e contact wire is suspended to messenger wire 
by fl exible droppers which are modelled by non-lin-
ear springs of the stiff ness kij. Th e subscript i refers to 
the span number, while j denotes the dropper number 
in the ith span. Th e tensile stiff ness kt of all droppers is 
identical, constant and equal to k. Compressive stiff -
ness kc is also identical for all droppers, constant and 
equal to κk, where κ is a coeffi  cient which determines 
the part of stiff ness k remaining aft er the assumed 
droppers stiff ness reduction applicable for the drop-
pers being compressed. Assuming κ  =  0 means full 
reducing stiff ness to zero (droppers have zero com-
pressive stiff ness), κ  =  1 means a  lack of reduction 
(compressive stiff ness is the same as tensile stiff ness). 
In the following part of this paper, the κ coeffi  cient is 
given in percentage and named shortly the compres-
sive stiff ness, and its small values are named the re-
sidual compressive stiff ness. 

Th e rule adopted for determining the dropper 
stiff ness can be written by the following conditional 
defi nition 


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which means that, in this paper, the droppers are 
modelled by bilinear springs [7]. While using equa-
tion (1), it is important to remember that the force 
Rij(t) denotes the dynamic reaction of the spring – 
positive when directed as it is shown in Fig. 1. At the 
same time, the spring is loaded by inversely directed 
forces, that is – compressive forces. Th erefore, the 
dropper is compressed when Rij  – 0

ijR  > 0. Th e force 
0
ijR  = mpgdij represents the spring reaction caused by 

the dead weight of the contact wire, where mp is the 
mass per unit length of the wire, g gravitational accel-
eration, and dij distance between droppers. Th e time-
dependent spring reaction is given by 

 Rij(t) = kij[wi(xij,t) – vi(xij,t)] (2)

in which wi(xij,t) and vi(xij,t) mean vertical displace-
ments of the messenger wire and the contact wire, 
respectively, in the place of dropper clamping xij (see 
Fig. 1). Defi nitions (1) and (2) show that the stiff ness 
of each dropper depends on the current state of mo-
tion of the messenger wire and of the contact wire, 
causing the geometrical non-linearity of equations of 
motion of the catenary. 

Th e contact wire is loaded by one or two pantographs 
moving with a constant speed at a fi xed distance between 
each other. Pantographs are modelled as two-degrees-
of-freedom systems, in which mass elements represent 
the collector head and articulated frame (see Fig.  2). 
Th ese elements are linked by linear springs and viscous 
dampers. In static conditions, the pantograph acts on 
the catenary with the constant uplift  force F = F1 + F2, 
which is, in dynamic conditions, complemented by the 
dynamic increment PJ(t), giving the cumulative contact 
force RJ(t), where J is a pantograph number. A contact 
elastic connection (spring) is used between the panto-
graph and contact wire. Such an element does not exist 
physically within the pantograph-catenary system, but 
using it simplifi es determination of the current contact 
force and is permitted by standard [12].

Fig. 2. Pantograph dynamic model [own study]
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Th e equations of motion of the pantograph-cate-
nary system, derived in [5] and written in the matrix 
notation, have the following general form:

 ( ) ( ) ( ) ( ) ( )t t t t t  Bq Cq K q f   (3)

Among the characteristic matrices of the equa-
tion (3), the stiff ness matrix K(t) is the most impor-
tant from the non-linear dropper behaviour view-
point. Similarly to that in [9], it is subdivided into four 
components as follows 

 const const ws
ˆ ˆ( ) (1 ) ( ) ( )t q t    K K K K K  (4)

where the components Kconst i constK̂  are constant ma-
trix, and component ( )tK  varies in time because de-
pends on dynamic interaction between the catenary 
and pantographs. Th e matrix Kconst depends only on 
the elastic characteristics of the multi-span messenger 
wire and contact wire, while the separated component 

constK̂  contains all these elements of the general stiff -
ness matrix which depend on the dropper stiff ness. 
Th e matrix constK̂  is calculated with an assumption 
that all droppers have non-zero initial stiff ness k, both 
for tension as well as for compression. Th e compo-
nent wsK̂ (q) has the same structure as constK̂ , but is 
dedicated only to droppers which are identifi ed as be-
ing compressed at the t moment. It is therefore de-
pendent on the general coordinates q(t) describing 
the motion of the catenary-pantographs system. It 
is easy to notice that the result of subtraction opera-
tion: const ws

ˆ ˆ(1 ) K K (q), occurring in relation (4), 
reduces the compressive stiff ness of droppers to the 
value kc  =  κk. Identifi cation of the droppers being 
compressed is performed in each time step h of the 
numerical integration of equations of motion. For 
numerical integration of equation system (3), the un-
conditionally stable variant of the Newmark method 
is applied.

Taking into account the internal structure of the 
stiff ness matrix (4) makes possible to rewrite the 
equation system (3) in two alternative forms
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which constitute a basis of two alternative algorithms 
of the simulation method.

Th e fi rst algorithm, based on equation (5), is simi-
lar to one described in [9]. Taking into account the re-

lation (4), it is easy to distinguish from the equation (3) 
the non-linear component nl

ˆ( ) (1 ) ( ) ( )ws t f q K q q  
and move it to the right side, pairing it with the vec-
tor f(t) representing excitation forces. Th e component 
fnl(q) is a vector gathering unknown non-linear forces 
which reduce the compressive stiff ness of droppers to 
the value kc = κk. It is estimated in the iterative loop 
in each step of the numerical integration, up to the 
required accuracy. In the fi rst iterative step, the vec-
tor fnl(q) is determined on the basis of solution of 
the linearized collocation condition of the Newmark 
method [10] which is achieved simply by removing 
the non-linear vector fnl(q).

In the second algorithm, based on equation (6), 
the direct correction of the stiff ness matrix takes place 
in each calculation step of the numerical integration. 
Th is correction is performed by subtracting the com-
ponent ws

ˆ ( )K q  calculated in a current state, that is, 
taking into account only these droppers which are 
subjected to compression in a t moment. Such correc-
tion is repeated several times in a given time step, up 
to the required accuracy of the solution vector q(t). As 
in the fi rst algorithm, the linearized collocation con-
dition is used in the fi rst iterative step.

Numerical analysis described below in this paper 
has been conducted utilising the both versions of sim-
ulation method, which diff er in the algorithm used to 
obtain the non-linear solution of the system of equa-
tions of motion (3). Th e method based on the itera-
tive-recurrent solution of the equation (5) is marked 
below by the MI symbol, while the method based on 
correction of the stiff ness matrix in accordance with 
equation (6) is marked by the MK symbol.

3. Initial data and results of the numerical 
analysis

Th e physical parameters of the pantograph – cat-
enary system, which were taken for calculations, are 
shown in Table 1. Th ey were adopted mainly on the 
basis of the data representing the reference model de-
scribed in standard [12], which is dedicated to vali-
dation of simulation methods. Other catenary char-
acteristics result from the tests conducted in earlier 
stages of authors’ research, described in [2].

All simulations have been conducted assuming a cat-
enary load by a passage of one pantograph at the speed 
of 300 km/h. Th e total length of the tested catenary sec-
tion, composed of fi ve identical spans, was 300 m. On 
the basis of authors experience, such a  section length 
is suffi  cient to examine a quality of simulation results 
and for an initial quantity analysis. A thorough quantity 
analysis would require to adopt a longer catenary sec-
tion, composed of minimum of ten spans [12].
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Numerical analysis has been divided into two 
parts. In the fi rst part, tests were conducted by the 
use of the fi rst simulation method (MI), namely with 
an iteration of the non-linear forces compensating an 
infl uence of the droppers being compressed, assum-
ing the time step length for numerical integration: 
h = 0.001 s. Th e aim of those tests was to analyse the 
infl uence of the compressive stiff ness of droppers on 
the system dynamic response. In the second part, the 
results obtained by both methods were compared (MI 
and MK), assuming the integration step h = 0.001 s 
and h = 0.0001 s. Among others, that enabled a more 
eff ective method to be indicated. 

Figure 3 shows the simulation results obtained 
for six diff erent values of the compressive stiff ness 
of droppers: from kc = 100%k (κ = 100%, no reduc-
tion, dropper compressive stiff ness equals tensile stiff -
ness) to kc = 10%k (κ = 10%, reduction to 10%). In 
Fig. 3a, time histories of the contact wire vibrations 
at the right steady arm of the middle catenary span 
are shown. Th e observation time starts from the pan-
tograph entry, and covers a  whole passage over the 
tested catenary section, together with free vibrations 
which occur aft er the pantograph leaves the section. 
Time histories of the pantograph head vibrations and 
dynamic changes in the contact force, during the pan-
tograph passage over two middle catenary spans (third 
and fourth), are presented in Figure 3b and Figure 3c, 
respectively. Th e horizontal axis has been scaled to 
match the distance between the vertical lines of the 
chart grid with a time interval which corresponds to 
the pantograph passage over a single span. Negative 
values of the contact wire displacement or pantograph 
head displacement mean an uplift . 

Comparison of the presented time histories shows 
that changes in the droppers compressive stiff ness, in 
the examined range, have a negligible infl uence on the 
contact wire uplift  at the steady arm. A slightly bigger 

infl uence is observed in the case of pantograph head 
vibrations – an increase in the uplift  of pantograph 
head together with a decrease in the compressive stiff -
ness of droppers is a  general tendency. Changes are 
not large (do not exceed 10% of the maximum val-
ues), but they signifi cantly infl uence the contact force. 
In this case, the diff erences in time histories are sig-
nifi cant.

It follows from Figure 3b that a lack of reduction 
in the compressive stiff ness of droppers (kc = 100%) 
results in large peaks of the contact force oscillations. 
Even peaks with negative values are observed, that has 
to be interpreted as a loss of contact between the pan-
tograph head contact strip and contact wire, which re-
sults not only in unacceptable breaks in power supply 
but also in arcing leading to damages on the contact 
surfaces. Reduction in the droppers compressive stiff -
ness positively infl uences the contact force, however, 
a signifi cant mitigation of the oscillation amplitudes 
occurs for the lowest stiff ness only (kc = 100%).

In order to establish how the system reacts when 
the compressive stiff ness is even lower, the second 
stage of an analysis was conducted. A higher reduction 
in the dropper compressive stiff ness was examined, 
namely the reduction to the values: kc = 1%, 0.1%, 0%, 
wherein the values of the order of 1% and 0.1% de-
scribe the residual compressive stiff ness of droppers. 
Simulations of dynamic responses of the system, ex-
ecuted in the above cases, have been compared with 
the solutions obtained for the previous range of drop-
pers compressive stiff ness. Selected results are shown 
in Figure 4.

Th e residual stiff ness of the order of 1% gives the 
results which do not diff er signifi cantly from the ones 
obtained for the stiff ness of 10%. In contrast, the re-
sidual stiff ness value of 0.1% leads to a  signifi cant, 
nearly double increase in the maximum uplift  of the 
contact wire (see Fig. 4a), while the contact force os-

Table 1
Geometrical and materials characteristics of the catenary structural elements and parameters of the pantograph

Catenary system Pantograph
Messenger wire specifi c mass [kg/m] 1.07 Speed of the pantograph [km/h] 300
Messenger wire tension [kN] 16 Mass of the pantograph head [kg] 7.2
Messenger wire axial stiff ness [MN] 12 Mass of the pantograph frame [kg] 15.0
Contact wire specifi c mass [kg/m] 1.35 Pantograph static force [N] 120
Contact wire tension [kN] 20 Stiff ness of the upper spring of the pantograph [N/m] 4 200
Dropper tensile stiff ness [kN/m] 100 Stiff ness of the lower spring of the pantograph [N/m] 50
Span length [m] 60 Parameter of the upper damper of the pantograph [Ns/m] 10
Number of spans 5 Parameter of the lower damper of the pantograph [Ns/m] 90
Number of droppers within span 9 Stiff ness of the contact spring [kN/m] 50
Material damping coeffi  cient of the messenger wire [%] 0.5 
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cillations do not decrease in a  substantial way (see 
Fig. 4b). Reducing stiff ness to zero, which is suggested 
by the standard [12] for the reference model, on one 
hand, gives generally lower oscillations of the con-
tact force, but, on the other hand, results in very large 
maximum uplift  of the contact wire. We can observe 
more than fi ve times exceeding the permissible uplift  
range (55 to 65 mm), which is given for the reference 
model in the standard [12] where the results have 
been validated by measurements performed for typi-
cal railway catenaries. Th is will be explained below in 
the last paragraph of this chapter.

In order to check the accuracy of the calculations 
and verify the obtained results, analogical vibration 
simulations were performed for the same section of 
the tested catenary. However, this time the second 
version of the simulation method was applied (MK), 
consisting in corrections of the stiff ness matrix in 
each calculation step. Time histories of the contact 
wire dynamic displacement at the right steady arm of 
the middle span, generated by both methods: MI and 
MK, are compared in Figure 5. Th e presented results 
were obtained with the use of the time step h = 0.001 s. 
Th e comparison shows that, together with lowering of 

Fig. 3. Time histories: a) contact wire uplift  at the right steady arm of the middle catenary span, b) displacement of the pantograph 
head, c) contact force, depending on the compressive stiff ness of droppers [own study]
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the compressive stiff ness of droppers, discrepancies 
between the results obtained by the two methods used 
for calculations grow. In the case of zero compressive 
stiff ness, the MK method gives a  bigger maximum 
uplift  of the contact wire than the MI method. Moreo-
ver, the use of two methods result in a diff erent shape 
of the response decaying.

Applying a smaller time step of numerical integration 
in the MI method: h = 0.0001 s leads to a high conform-
ance of time histories obtained by both methods. Th is 
is shown in Figure 6. In the case of contact wire uplift , 
conformance is nearly total (see Fig. 6a). In the case of 
contact force, minor discrepancies can be seen in time 
histories corresponding to the value κ = 1% (see Fig. 6b).

Fig. 4. Time histories: a) contact wire uplift  at the right steady arm of the middle catenary span, b) contact force, depending on the 
compressive stiff ness of droppers [own study]

Fig. 5. Time histories of contact wire uplift  at the right steady arm of the middle catenary span, generated by numerical integration 
with the step h = 0.001 s [own study]
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It is worthy to note that the computational time 
necessary for simulations by using the MK method 
is many times shorter than for the MI method, while 
maintaining the same accuracy. Th is results from the 
ten times lower number of time steps and from a sig-
nifi cantly lower number of iterative steps necessary to 
achieve non-linear solution in each calculation step. 
Th e MK method requires 1 to 2 iterative steps while 
the MI method requires 5 to 8 steps. Th erefore, con-
sidering the computational eff ort needed to obtain 
precise results of simulations, the MK method with 
the time step h = 0.001 s should be recommended for 
further calculations.

Within the set of simulations shown in Figure 6, 
there are additional time histories corresponding to 
the residual stiff ness kc  =  0.01%k. Taking those ad-
ditional simulations into account in analysis dem-
onstrates that, together with lowering of the residual 
compressive stiff ness of droppers, solutions approach 
the limit case κ  =  0 in which compressive stiff ness 
equals zero. Th is proves the correctness of the com-
putational algorithm. On the other hand, this shows 
how the pantograph-catenary system would behave if 
all the droppers being under compression suddenly 
lost their residual stiff ness up to zero.

Figure 6a shows that, in the case of zero or negligi-
ble compressive stiff ness of droppers, the high uplift  of 
the contact wire is observed when the catenary is mod-
elled consistently as a complex cable system. It can be 
explained by the fact that, in the considered case, a set 
of droppers near the contact cross-section does not 
operate, and in consequence, cooperation between the 
messenger wire and contact wire in such an area is bro-
ken. Th e contact wire starts to vibrate nearly as an in-
dependent (not-suspended) string loaded by a passage 
of the pantograph, as shown in Figure 7. During the 
vibration process, the contact wire moves down aft er 
its uplift , which causes a tension of slackening droppers 
and a restoration of the cooperation with the messen-
ger wire. As a result, further free vibrations occur with 
small amplitudes around the static equilibrium state.

4. Conclusions

Interesting conclusions arise from the numerical 
tests presented above. First of all, adopting a catenary 
model based on fl exible cables theory shows that, for 
high operational speeds of trains, temporary large os-
cillations of the contact wire may occur, if droppers 

Fig. 6. Time histories: a) contact wire uplift  at the right steady arm of the middle catenary span, b) contact force, generated by 
numerical integration with the step h = 0.001 s in the MK method and with the step h = 0.0001 s in the MI method [own study]
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compressive stiff ness equals zero and droppers are ini-
tially tensed only by a self-weight of the contact wire, 
see equation (1). Such oscillations were observed in 
the past in high-speed lines, e.g. in relatively weakly 
tensed LN1 catenary utilised on Southeast TGV rail-
way line [2]. Th ey were practically eliminated, mainly 
by increasing the tensions of the messenger wire and 
contact wire in constructions built later (e.g. in LN6 
catenary: to 20 kN and 26 kN, respectively). It could 
be supposed that an increase in the catenary tension 
introduces a certain initial tension of droppers, which 
results in their minor compressive stiff ness. Th e pre-
sented research shows that it is suffi  cient to ensure 
a residual compressive stiff ness of the order of 1% of 
tensile stiff ness, in order to keep catenary oscillations 
within permitted limits. 

Moreover, the presented research has shown that 
taking a  residual compressive stiff ness of droppers 

into account in the computational model enables 
simulation results to be obtained comparable with 
the results given in the standard [12] for the reference 
model. Regarding the above, a validation of the elabo-
rated simulation method has been conducted, in ac-
cordance with the fi rst validation step of the standard 
[12] but assuming one per-cent residual compressive 
stiff ness of droppers. Calculations have been per-
formed by the MK method with the numerical inte-
gration step 0.001 s, for the data gathered in Table 1 
– with such a diff erence that the catenary section is 
composed of 10 spans, as it is required by the stand-
ard. Summary of simulation results shown in Table 2 
reveals high conformance with the limits defi ned in 
the standard. Most of the parameters constituting so-
called catenary dynamic characteristics are within the 
limits given in the standard [12]. Some, which are 
outside the limits, exceed them insignifi cantly. Th is 

Fig. 7. Time histories of the contact wire uplift , obtained for a not-suspended wire (“only wire”) and for a wire suspended to messenger 
wire by droppers with zero compressive stiff ness (“wire in catenary with κ = 0”) [own study]

Table 2
Comparison between simulation results and limits defi ned in the standard

Parameter Simulation 
results

Standard limits
min max

Mean value of contact force Fm [N] 117.1 110 120

Standard deviation of contact force [N] 36.1 32 40

Statistical maximum of contact force Fm + 3 [N] 225.4 210 230

Statistical minimum of contact force Fm -  [N] 8.9 –5 20

Actual maximum of contact force Fmax [N] 199.4 190 225

Actual minimum of contact force Fmin [N] 23.3 30 55

Percentage of loss of contact [%] 0.0 0

Maximum uplift  at support [mm] 66.3 55 65

Values within the standard limits are marked in bold. Values which exceed the limits are marked in italics.

[Own study].
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demonstrates reliability of the developed simulation 
method and its usefulness to predict the dynamic be-
haviour of the newly designed catenaries, in diff erent 
operational conditions.
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