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Model of a Drive System for Low-Floor Trams with a Four-Linkage 
Coupling

Henryk SANECKI1 , Tomasz CZAUDERNA2

Summary
Th e article describes the structure and principles of operation of a drive system used in some low-fl oor trams. Th e system 
consists of electric motors, gear transmissions as well as hollow shaft s and four-linkage couplings causing the wheels to 
move. During the study, a dynamic model was built and the parameters needed to carry out a simulation were determined. 
NGT6 low-fl oor tram wagons operated by MPK S.A. Cracow were used as examples of existing vehicles. Due to the lack 
of available data, part of the work was devoted to determining mass moments of inertia of drive system components using 
an experimental method of torsional vibrations of a string. In subsequent chapters, a mathematical model was developed 
and a tram start-up simulation was performed based on specifi c parameters of the individual system components. Some 
of the results were presented in the form of graphs.

Keywords: tram riding simulation, mathematical model of dynamics, start-up, mass moments of inertia, method of tor-
sional vibration of string

1. Introduction
Th e subject matter of the following article revolves

around the presentation of a simulation of the opera-
tion of a drive system of a low-fl oor tram with four-
linkage couplings [1, 2]. Th e drive systems of low-
fl oor trams are among the most complex ones used 
in contemporary railway vehicles, as they should be 
characterised by:
 a low fl oor covering as much of the vehicle under-

frame as possible,
 a small wheel diameter due to the requirements of

the lowest possible fl oor,
 as low of an impact on the vibration of the envi-

ronment as possible.

In view of these assumptions, high design require-
ments are placed on the drive systems of these ve-
hicles. Other criteria, such as durability or effi  ciency, 
may be of secondary importance. Th ese requirements 
necessitate a reduction in the size of the drive systems 
and complicate the power transmission path. Mod-
ern trams use very diverse drive systems. Most of the 
currently manufactured vehicles are low-fl oor trams 

with varying proportions of low-fl oor space inside 
the vehicle. Th e drive systems of fully low-fl oor trams 
are the most complex. Th ey are oft en unconventional, 
however, they are not the topic of this article.

In the article on trams operated in Cracow (such as 
Bombardier NGT6, Bombardier NGT8, PESA KRA-
KOWIAK 2014N, STADLER TANGO KRAKÓW), 
the low fl oor constitutes about 63–80% of the vehicle’s 
interior surface, while a medium-height fl oor (about 
550–600 mm), diff ering from the low fl oor by one step 
stair, is used above the motor bogies. Th is solution en-
abled the use of a classic motor bogie with smaller di-
ameter wheels and reduced size of basic components 
such as motor, transmission and couplings. A  com-
plete springing of the motor and transmission was 
also achieved through the use of a hollow shaft  and 
a system of two, serially connected four-linkage cou-
plings [3], Fig. 1. Due to the design of the low fl oor, 
the diameters of the shaft s and coupling should be as 
small as possible while retaining the properties of the 
transmission of the driving moments.

In order to obtain an adequate mathematical de-
scription of the system presented in Chapter 2 (Fig. 3), 
it is necessary to determine the mass moments of 
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inertia of the individual components, and not all of 
them have shapes that are convenient for calculations. 
Th e components of the vehicle drive system are usual-
ly rotating parts of irregular shape, and are frequently 
made up of various substances of diff erent densities. 
Typically, these are metal-rubber joints as used in 
four-linkage couplings (Fig. 2).

Fig. 1. Th e drive system of the NGT6 Kr tram car: 1) motor 
bogie underframe, 2) electric traction motor, 3) transmission, 4) 

hollow shaft , 5) four-linkage coupling [FLENDER]

Determining mass moments of inertia for com-
plex-shaped components is analytically very diffi  cult, 
sometimes even impossible, which is why other meth-
ods, including experimental ones, are applied. One of 
these methods is the determination of mass moments 
of inertia by analysing the torsional vibrations of the 

string. In such a case, it is important that the string 
is suspended as an extension of the geometric axis of 
the tested object in the form of an irregularly shaped 
rotating solid.

In order to carry out calculations, model dynamic 
systems are usually modelled using simplifi cations, 
which depend on the scope of the system under con-
sideration. In the case of railway vehicles, it is possible 
to examine the entire body, one of its components, 
the bogie, the axle with motor and transmission, or to 
analyse each component in detail.

2. A general dynamic model of a drive 
system

A diagram of a  single drive system is shown in 
Fig. 3a. Th eir number is 2nw, where nw is the number 
of motor bogies. Th e system contains an electric mo-
tor with rotor 1.6; 1.1; 1.2 connected to pinion 1.3; 1.4 
of a gear transmission via coupling 1.5. Th e gear trans-
mission consists of gears z1, z2, z3, z4, denoted as 1.4; 
2.3; 2.2; 3.2. Th en, the driving moment is transmitted 
to coupling 5 via bush 3, on which elements 3.1-3.6 are 
located. Th e bush 3.4 is connected to the middle part of 
coupling 5 via disc 3.6 and linkages 4 using fl exible ele-
ments. On the other side of the coupling are linkages 6, 
fl exible elements and disc 7.1, which transmits the driv-
ing moment to axle 7.2 and road wheels 7.3 and 7.4.

Fig. 2. FLENDER four-linkage coupling used in the drive system of a low-fl oor tram [1]
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Due to a large number of components in the sys-
tem under study, the achievement of a viable solution 
for its dynamics is very diffi  cult. Th erefore, the need 
for some simplifi cations arises. Figure 3b shows a dia-
gram of a reduced model of a drive system consisting 
of the following masses: L – left  side with respect to 
the coupling, P – right side with respect to the cou-
pling, S – middle part of the coupling, CL – left -hand 
linkages of the coupling, CP – right-hand linkages 
of the coupling. Flexible elements with stiff nesses kL 
and kP and damping coeffi  cients hL and hP are on both 
sides of the coupling.

In the case of the analysed system, the parameters 
of its real components, as in Fig. 3a, should be replaced 
by the corresponding parameters of components of 
the substitute model (Fig. 3b). Th e reduced moment 
of inertia JP can be determined by comparing the ki-
netic energy of reduced mass P with the total kinetic 
energy of the components replaced by this mass, i.e.:

 
2

P 1 1 2 1 3
2 2 2 2
P 1 2 P

1 1 1 1
2 2 2 2

J J J J         , (1)

where: indices 1, 2 and 3 are the shaft  numbers 
(Fig. 3a), and 1 is the effi  ciency of one pair of gears. 
Aft er transformations, the formula was:

      2 2 2
P 1 2 1 4

2
1 13 2 4 3 3/ / /J J z z z z J z z J    . (2)

An analogous procedure applies to the moment of 
inertia (JL). Th e kinetic energy of the reduced mass 
must correspond to the kinetic energy of the compo-
nents replaced by this mass, that is:

 
2

L 7 tram
2 2
L nap L w

1 1 1
2 2 2

2J Jn n m v     , (3)

where:
tram 1 wn 2 wt 2 3n tm m n m n m m     – total mass of 

the tram,
m1 – kerb mass of tram without bogies,
m2n – mass of 1 motor bogie,
m2t – mass of 1 trailer bogie,

w wn wtn n n   – number of bogies in the tram,
nwn – number of motor bogies,
nwt – number of trailer bogies,
nnap – number of drive systems (in the analysed 

tram, it is 2nwn),
m3 – passengers’ mass,
D – wheel diameter,
v – tram speed,

L / 2v D  .  (4)

Aft er substituting formula (4) into (3) and aft er 
transformations, the formula for reduced moment of 
inertia JL is as follows:

 
 2

L 7 w tram
nap

12 / 2J J n m D
n

     . (5)

Th e remaining mass moments of inertia of the 
substitute model can be defi ned as:

 JCP = J4, JS = J5, JCL = J6. (6)

Fig. 3. a) Diagram of a single drive system in the bogie; gears z1, z2, z3, z4 marked as: 1.4; 2.3; 2.2; 3.2; b) substitute model of the tram’s 
drive system; c) connection of the substitute mass L to the coupling centre – layshaft ; d) connection of the coupling centre (layshaft ) to 

substitute mass P [own elaboration]
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3. Analytical determination of mass 
moments of inertia

Certain components of the drive system under 
study (shaft s, wheels, discs) have simple shapes that 
can generally be reduced to a  truncated cone with 
a conical hole (Fig. 4). Th is structure can be described 
by the following volume formula:

 

3 3 3 3
b a b a

b a b a12
l D D d dV

D D d d
   

    
, (7)

or

 
 2 2

sr a b sr a b4 4
12

lV D D D d d d
    . (8)

Fig. 4. Dimensions of a truncated cone with a hole 
[own elaboration]

Th e formula for the mass moment of inertia takes 
the following form:

 

5 5 5 5
b a b a

b a b a160
l D D d dJ

D D d d
   

     
, (9)

where, to enable calculations for Db = Da and/or 
db = da, it is possible to use the formulae below:

   

   

5 5 4 2 2b a
b a b a b b a a

b a
5 5 4 2 2b a

b a b a b b a a
b a

5

5 .

D D D D D D D D D D
D D

d d d d d d d d d d
d d


    




    
  

(10)

4. Experimental determination of mass 
moments of inertia

Th e mass moment of inertia can be determined us-
ing the single-string suspension method. Th e measur-
ing device consists of a support 1, a string 2, a holder 3 
and a tested element 4 (Fig. 5a). Th e tested specimen 
is fi xed in the holder so that its main axis coincides 

with the axis of the string. Th e element suspended 
from the string is an oscillating system performing 
torsional vibrations.

Fig. 5. Diagram of string test site (a), pre-test site (b) 
[own elaboration]

4.1. Selection of string dimensions

Th e experiment should be performed using a steel 
wire, for example, from a music plucked instrument 
(e.g. an electric guitar). A string of diameter d is load-
ed with weight Q of the tested element together with
a  holder, which causes tensile stresses Q

A
   and 

torsional moment M, which leads to torsional stresses

o

M
W

  . Th e following strength condition must be met:

 

22
2 2 m

o

3 3Q M R
A W S

         
   

, (11)

where:
2

4
dA 

 , 
3

o
o

2
16

J dW
d


  ,

Rm – tensile strength of the string material,
S – safety factor.

For a given (maximum) angle φ, the torsional mo-
ment of the string is:

 
o o

2
GJ GW dM
l l

 
  , (12)

where:
l – distance between the string fi xing points,
G –  Kirchhoff ’s modulus; modulus of form 

elasticity.
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Now the strength condition takes the following 
form:

22 2 2
o m

2 2

4 43 3
2 2o

Q GW d Q Gd R
W l l Sd d

                       
,

(13)
or

 

2 2 2
6 4m 43 0

2
G R Qd d
l S

                 
. (14)

By assuming:

2x d  oraz 
2

3
2
G
l

    
 

, 
2

mR
S

    
 

, 
24Q     

,

(15)

an algebraic equation of the third degree is obtained 
and takes the form:

 
3 2 0x x    . (16)

Equation (16) for x and d can be solved numerical-
ly. Th e required diameter d = 0,85 mm (assumed to be 
1.2 mm) was obtained aft er calculations for the data:

E = 210 GPa, , 
 2 1

EG





, Rm = 1600 MPa

and for Q = 304 N, l = 750 mm, φ = 5° and for safety 
factor S = 3.

4.2. Th eoretical basis of research

Before the actual research is carried out, it is nec-
essary to perform a number of preliminary activities. 
A string of diameter d should be fi xed relative to the 
suspension point so that its upper end is not rotated 
or otherwise displaced (this point should be fi rmly 
attached). A trial test should be subsequently carried 
out on an object in the form of a plugged pipe of mass 
mr, diameter Dr and wall thickness sr together with 
a sling, rotating the pipe by an angle φ = 5° and mea-
suring the initial vibration period Tw (Fig. 5b). Th is 
allows the calculation of moment of inertia Jw:

 

2
w o

w 24
GT JJ

l



,  (17)

where: 
4

o 32
dJ 

 .

On the other hand, the moment of inertia for the 
trial test can be determined theoretically. Taking into 

account a circular disc (plugging the pipe) of mass mT, 
diameter DT and a sling (Jz), moment Jwt is described 
by the formula:

 
 22 2

wt r r r r T T z
1 12
8 8

J m D D s m D J       , (18)

which allows calculating period Twt and assessing the 

error w wt

w

T T
T
 :

 

wt
wt

o

2 lJT
GJ

    (19)

It was found that Tw = 3,2 s with an error of 7,6% 
and moment of inertia Jw = 5687 kg·mm2.

In order to carry out the actual tests, a disc (hold-
er 3 with a sling) used for fi xing the tested elements 
should be suspended from the lower end of the string 
(Fig. 5a). Th e end of the string must be located at the 
centre of gravity of the disc so that it occupies a hori-
zontal position. It is necessary to attach successive test 
objects to the disc and determine the corresponding 
torsional fl uctuation periods Ti. On this basis, the 
mass moments of inertia of the i elements under study 
can be determined according to the formula:

 

2
o

u24
i

i
T GJJ J

l
 


, (20)

where: Ju is the mass moment of inertia of the holder 
(disc), which can be calculated based on formula (21):

 
2 2

u u u u
1

12
J m A B    , (21)

where:
mu – handle mass,
Au, Bu –  dimensions of the rectangular disc (holder).

4.3. Test course

Th e practical determination of mass moments of in-
ertia was not easy. Initially, the availability of drive sys-
tem components posed a problem. For this purpose, it 
is possible to use either brand-new components or com-
ponents dismantled during periodic repairs. In this case, 
a brand-new layshaft  and centre disc were used, the lat-
ter of which is pressed onto the axle shaft  under operat-
ing conditions. In addition, a test was also carried out on 
the centre disc from the element unscrewed from shaft  
one, that is the output shaft  on the transmission side. All 
items were weighed on an electronic scale.

Th e next step was to select an appropriate string 
and fi nd a location for the test site. For this purpose, 
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a gridded staircase was chosen for the platform used 
to repair components on the roof of railway vehicles. 
In order to suspend the string, a steel plate with fi ve 
holes drilled in it was prepared: four for screws pass-
ing through the existing holes in the metal-rubber 
bushes of the tested coupling and one in the centre for 
screwing in a  screw with the test string soldered in.
Th e screw was drilled along the geometric axis and 
the string was inserted in this place using a hard-sol-
dered joint.

In order to determine the mass moment of the lay-
shaft , i.e. the output shaft  on the transmission side, it 
proved necessary to run three tests (for organisational 
reasons, at considerable intervals) to achieve results 
suitable for analysis.

Th e thickest copper-braided guitar string available 
was originally chosen. Th e copper braid caused the 
layshaft  rotation to be signifi cantly greater than 90 de-
grees each way and not be dampened. It is likely that 
the elastic potential energy of the braid was revealed.

Th e second trial involved the thickest thin piano 
string wire available, with a  diameter of 0.56 mm. 
In general, tests on the reference pipe went correctly 
except for the undesirable eff ects of the pendulum, 
while the shaft  testing experienced wire breakage aft er 
the fi rst full rotation.

Th e third attempt yielded the expected results 
(Fig.  6) apart from the fact that it was not possible 
to completely eliminate pendulum oscillation, par-
ticularly in the case of the test pipe. In the third set 
of tests, steel (piano) wire with a diameter of 1,2 mm 
was applied, which allowed testing of all three cou-
pling components correctly. Th e observed vibration 
periods increased in proportion to the square of the 
wire diameter.

Th e primary accuracy limitations stem from the 
visual assessment with a  measurement accuracy on 
a  fi lm of up to 1 s. An increase in the accuracy of 
the time scale was not justifi ed, as it was diffi  cult to 
visually pinpoint the precise moment of turn of the 
rotational movement of the tested object. Th e oscilla-
tion period was designated as an average from a lon-
ger observation interval aft er eliminating the fi rst less 
precise movement. For organisational reasons, the 
measurement was shortened to about three minutes, 
which translates to a  dozen rotations. Other distur-
bances included vibrations caused by other machines 
operating inside the hall and vibrations resulting from 
the mere act of suspending an object or setting it in 
motion. Th e mere suspension of an object is an in-
defi nite movement and so is putting it into rotation, 
which is why the fi rst two or three rotations were ex-
cluded from the calculation.

A visual assessment of the recorded digital footage 
was carried out, with the accuracy of the time measure-
ment being 1 s. In the case of the test pipe, 15 torsional 

vibrations lasting 48 s were observed, which gives an 
average of 3,2 s. In the case of the largest component 
tested, it was fi ve cycles for 142 s, an average of 28,4 s. 
In two other cases, eight cycles were observed for 204 s, 
averaging 20,5 s, and fi ve cycles for 114 s, or 19,8 s.

Fig. 6. Experimental determination of the mass moment 
of inertia: a) of the test tube, b) of the centre section of the 

coupling, c) of the coupling centre disc on the drive shaft  side 
coming out of the transmission [photo by T. Czauderna]

An additional indication of test accuracy is a com-
parison of the mass moment of inertia determined 
analytically and experimentally for the reference pipe 
under examination.

5. Dynamic model

Solutions for various drive systems can be found 
in many publications, e.g. [4, 5, 6]. Th e operation of 
the drive system shown in Fig. 3b is described by the 
following diff erential equations:

     L L L CL L L CL L L LJ h k M          , (22)

 

   
   

CL CL L CL L L CL L

L CL S L CL S ,
J h k

h k
      

 

  

   

  
 

 (23)

 

   
   

S S L CL S L CL S

P CP S P CP S ,
J h k

h k
       

      

  
 

 (24)
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   
   

CP CP P CP P P CP P

P CP S P CP S ,
J h k

h k
      

 

  

   
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   

(25)

     P P P CP P P CP P P Pö öJ h k M          , (26)

where:
 L LM   denotes a reduced moment caused by the 

tram’s drag forces,
 P PM   indicates the reduced drive moment 

from the electric motor.

Th e anti-torque is described by the following equa-
tion (27):

 
   L L op op L2 2 2

D D DM F F     
 

  , (27)

where:
v – tram speed in km/h (maximum 80 km/h), for-

mula (4),
Fop (v) – the drag force of the tram, which is mea-

sured in various ways, is described, for exam-
ple, in [6]. Fig.  7 shows example diagrams of 
this function according to various authors.

Further analyses were carried out based on the Da-
vis equation in the form:

   2
opF v a bv   [kN], (28)

where:

tram

osi

14,23,58
1000

g ma
m

  
   
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, 

tramczol

osi wag

0,045 0,151
1000

g mSb
m n


    , (29)

v – In km/h, nwag = 3 – number of elements (car-
riages) of the tram,

Sczoł =  5,52 m2 – tram front area,
g·mtram = 457,6 kN – tram weight,

tram
osi

w2
mm

n
  = 7780 kg – tram mass per axle,

nw = 3 – number of bogies (nw = nwn + nwt = 2+1).

Knowing the characteristics of the motor  s sM  ,
where Ps u   , it is possible to determine the re-
duced driving moment according to the formula:

     2
P P s P 1M M u u    , (30)

where:
u = (z2/z1)· (z4/z3) = 5,0556, η1 = 0,99,

 s PM u  – motor driving moment as a  func-
tion of the angular velocity of the motor shaft  

Ps u   .

Th e following data can be used to characterise Ms(n) 
of the asynchronous motor used, in line with [1]:
Nn = 125 kW (nominal motor power; Nn = Mnnn/30),
Mn = 675 Nm (nominal motor torque),
nn = 1770 1/min (rotational velocity corresponding to 

the nominal motor torque),
Mk = 880 Nm (critical motor torque),
no = 4250 1/min (maximum motor speed).

Th e characteristics  Ms(n) may be determined aft er 
applying the Kloss equation:

 
  k n

s 2 2
k

2ss kMM n
s s




, (31)

Fig. 7. Diagrams of the Fop(v) function for 
trams according to various authors [6, 7]
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where:

k

n

Mk
M

 , (32)

s, sk – slippage and critical slippage defi ned as:

o

1 ns
n

   , k
k

o

1 ns
n

  . (33)

By using in equation (29) Ms(nn) = Mn  and 

n
n

o

1 ns s
n

   , the following formula for critical 

slippage is obtained:

  2
k n 1s s k k   . (34)

Fig. 8 shows a  diagram of function Ms(n) with 
characteristic quantities, such as Mr – starting torque, 
Mn, nn, Mk, nk and no, marked.

Th e Runge-Kutty method can be used to solve the 
system of equations (22)−(26), which requires new 
variables:

0 Py   , 1 0y y  ; 2 CPy   , 3 2y y  ; 

4 Sy   , 5 4y y  ; 6 CLy   , 7 6y y  ; 

 8 Ly   , 9 8y y  . (35)

In addition to the data provided in the previous 
chapters, the analyses are based on the following 
quantities:
m1 = 20100 kg – kerb mass of tram without bogies,
m2n = 4125 kg – mass of 1 motor bogie,
m2t = 2650 kg – mass of 1 trailer bogie,
nwn = 2 – number of motor bogies,
nwt = 1 – number of trailer bogies,
m3 = 15650 kg – passengers’ mass,

mtram = m1 + nwnm2n + nwtm2t + m3 = 46650 kg – maxi-
mum mass of the tram,

nnap = 2nwn = 4 – number of drive systems,
D = 600 mm – diameter of a new wheel (minimum 

value = 510 mm),
v = 80 km/h – maximum tram speed,
k11 = 1,6648 kN/mm – radial stiff ness of one coupling 

joint according to [3],
R = 136 mm – radius of the circle of arrangement of 

joint axes in the coupling,
h11 – coeffi  cient of damping of one joint in the coupling 

(at approximately 20°C), in accordance with [8]:

 11
sec18 42 LB

inch
h       

  sec18 42 4,5 N
25, 4 mm

 
   

  
 =

= (3,2÷7,4) [Ns/mm],
J7 = 19,874 kg·m2 – mass moment of inertia of the axle 

set,
JL – reduced mass moment of inertia at the wheel side, 

according to formula (5):

 2
7 w tram

nap

2

2

12 / 2

0,6 118,64 2 3 46650
2 4

1079, 44 kg m

LJ J n m D
n

     

         
   

 

JCL = 0,195 kg·m2 – mass moment of inertia of the 
linkage system on the left  side of the coupling,

JS = 0,285 kg·m2 – mass moment of inertia of the cen-
tral part of the coupling,

JCP = 0,195 kg·m2 – mass moment of inertia of the 
linkage system on the right side of the coupling,

JP = 24,914 kg·m2 – reduced mass moment of inertia 
on the motor side,

Fig. 8. Motor characteristics – diagram of 
function Ms(n) [own elaboration]
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kL = kP = 4k11R2 = 4·1664,8·1362 = 123,2 kN·m – rota-
tional stiff ness of the linkage system,

hL = hP = 4h11R2 = 4·(3,2÷7,4)·1362 = (237÷547)·kN·s·mm 
– coeffi  cient of damping of the linkage system.

In order to make the notation dimensionless, it is 
necessary to use substitution

 x = t/t1, (36)
where: t – time in s, t1 – auxiliary fi gure (equal to 1s). 
Th is has resulted in the following relationships:

Z Z
Z

1

1
Z

d d dx
dt dx dt t
         ,

 

2
Z

Z Z Z2 2
1 1 1

1 1 1d d
dx t tdt t

            
 

 , (37)

where: Z denotes generally: φP, φCP, φS, φCL, lub φL.

Aft er dividing equations (22)-(26) by k = kL = kP 
on both sides and taking into account the relationship 
h = hL = hP, they take the form:

 

     L L 1L
L CL L CL L2

11

/M tJ h
kt kkt


          ,

(38)

   CL
CL CL L S CL L S2

11

2 2J h
ktkt

             ,

(39)

    S
S CL CP S CL CP S2

11

2 2J h
ktkt

              ,

(40)

   CP
CP CP P S CP P S2

11

2 2J h
ktkt

             ,

(41)

   P P P 1
P CP P CP P2

11

( / )J h M t
kt kkt

          .

(42)

Given the symmetry of the coupling, the following 
equation applies: JCL = JCP. By substituting into equations 
(39) and (41) the so-called small parameter , defi ned as:

2
6CL CP

2 2 2
1 1

kg m0,195 1,583 10 1
123,2 1 kN m s

J J
kt kt

 
        

 

(43)
the equations take the form:

   CL CL L S CL L S
1

2 2h
kt

             , (44)

   CP CP P S CP P S
1

2 2h
kt

             .
 
(45)

All variable functions generally designated as φZ are 
developed into a power series around small parameter ε

 
Z Zi

0

i

i





    . (46)

When the defi nition (46) is applied in equation 
(44), it becomes:

 
1

CLi CL 1
0 0

i i
i

i i

 



 

       =

 CL L S CL L S
0

2 (2 )i
i i i i i i

i





              ,

(47)

where the following substitution was made:

 1

h
kt

  . (48)

Th e following iterative relationships were obtained 
from equation (44):

   CL0 L0 S0 CL0 L0 S00 2 2           , (49)

     CL L S CL L SCL 1 2 2i i i i i ii            

 for i = 1, 2, 3, … (50)

and, aft er analogous operations on equation (45), 
compounds:

   CP0 P0 S0 CP0 P0 S00 2 2           , (51)

     CP P S CP P SCP 1 2 2i i i i i ii            

 for i = 1, 2, 3, (52)

Given the zero approximations (49) and (51), vari-
ables CL0  and CP0  can be eliminated, hence equa-
tions (42), (40) and (38) take the form:

     P P0 1
P P0 S0 P0 S0 P0

/1
2 2

M t
k
           ,

(53)

   S S0 L0 P0 S0 L0 P0 S0
12 2

2 2
               ,

(54)
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     L L0 1
L L0 S0 L0 S0 L0

/1
2 2

M t
k
           ,

(55)
where the following substitution was made:

 
L

L 2
1

J
kt

  , S
S 2

1

J
kt

  , P
P 2

1

J
kt

  .  (56)

In order to solve the system of equations (53)−(55) 
using the Runge-Kutty method, the following new 
variables must be applied (with the i index omitted):

0 Py   , 1y y , 2 Sy   , 3 2y y , 

 4 Ly   , 5 4y y . (57)

Equations (53), (54) and (55) assume the form:

     1 3 1 2 0 P 1 1
P P P

1 1 /
2 2

y y y y y M y t
k

     
  

,

(58)

 
   3 5 1 3 4 0 2

S S

12 2
2 2

y y y y y y y      
 

, (59)

     5 3 5 2 4 L 5 1
L L L

1 1 /
2 2

y y y y y M y t
k

     
  

.

(60)

To obtain the next (1st) approximation, it can be 
seen that equations (49) and (51) can be written as:

 
 CL0 L0 S0

1ln 2        
, (61)

 
 CP0 P0 S0

1ln 2        
, (62)

or

 CL0 L0 S0 12
x

C e

    , (63)

 CP0 P0 S0 22
x

C e

    . (64)

Assuming zero initial conditions for the angles: 
φCL0, φL0, φCP0, φP0, φS0 (for x = 0), it is possible to ob-
tain C1 = C2 = 0 and formulas:

 
L0 S0

CL0 2
    , (65)

 
P0 S0

CP0 2
    , (66)

which determine the left  sides of equations (50) and 
(52), namely (for i = 1):

   CL0 CL1 L1 S1 CL1 L1 S12 2             , (67)

   CP0 CP1 P1 S1 CP1 P1 S12 2             . (68)

Th e determination of successive approximations 
for the solution of the problem under study was fur-
ther abandoned due to the diffi  culty of expanding 
functions  P P 1/M t  and  L L 1/M t  into a power 
series with respect to small parameter  Th e compli-
cation stems from the fact that the listed functions 
must take forms similar to the right side of the func-
tion (46). At this point, it should be noted that it is 
possible, although very labour-intensive, to obtain 
such a result, as it requires the approximation of func-
tions  P P 1/M t  and  L L 1/M t  by 5th- and 2nd-
degree polynomials.

An additional argument for omitting successive 
iterations is a very small value of parameter , which 
can be seen from equation (43). It allows neglecting 
successive expressions of the expansions of individual 
functions.

6. Results of the simulation of drive system 
movement

Chapter 6.1 contains the results of a simulation of 
tram movement: angles of rotation and speeds for the 
data provided above (fully loaded tram) and for an 
example of motor torque Mst().

6.1. Motor driving moment control

During movement, the motor is controlled to adapt 
the driving moment to the resistance of the movement 
so as to achieve the correct tram speed (Fig. 9).

For the intersection of the nx1 characteristics 
Mst1(n) and Mst2(n), the following condition must be 
satisfi ed:

 Mst1(n x1) = Mst2(n x2), (69)

i.e. (aft er applying formula [31]):

 
1 k1 2 k2

2 2 2 2
1 k1 2 k2

s s s s
s s s s


 

, (70)

where:

o

1i
i

ns
n

  , k
k

o

1 i
i

i

ns
n

  , i = 1, 2. (71)
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Th e substitution of formulae (71) into (70) results 
in the equation:

 
o1 o1 k1 o2 o2 k2

2 2 2 2 2 2
o1 o1 k1 o2 o2 k2

( ) ( )
( ) ( )

n n n s n n n s
n n n s n n n s

   


   
, (72)

in which it is necessary to consider relationships:

 o1 k1 o2 k2 o k o kn s n s n s n n n      . (73)

Th erefore, aft er appropriate transformations, the 
following quadratic equation is obtained:

 
2

o1 o2( ) ( ) 0n n n n n     , (74)

with a root:

 

2
2o1 o2 o1 o2

x1 2 2
n n n nn n     

 
 . (75)

Aft er applying dimensionless variables:

o

n
n

  , x
x

o

i
i

n
n

  , o
o

o

i
i

n
n

  , k
o

ns
n


 , i = 1, 2, 3,  (76)

the solution becomes: 

 

2
2o1 o2 o1 o2

x1 k2 2
s        

 
  (77)

or in general:

 
2

o o, 1 o o, 1 2
k2 2

i i i i
xi s      
   

 
 . (78)

6.2. Tram start-up simulation

Th e case of motor control using 5 sub-charac-
teristics was analysed. In the case of simulation 

calculations, the control moment formula Mst() 
was used as presented in formula (79). It forms the 
envelope of partial characteristics Msti(), i = 1,2,…,5 
shown in Fig. 10 (thick continuous line).

 

 
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 

 
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x12 2
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x1 x22 2

o2 k

o3
st k k x2 x32 2

o3 k

o4
x3 x 42 2

o4 k

o5
x 4 x52 2

o5 k

if 0
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2 if

if

if
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s

M M s
s

s

s

 
   

  
 

    
  
 

       
  
 

    
  
 

    
  

 (79)

Fig. 10. Cours of motor moment Mst() [own elaboration]

Fig. 9. Controlled motor characteristics Mst1(n) 
and Mst2(n) intersecting at point nx1 and nominal 

characteristic Ms(n) [own elaboration]
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Fig. 11 presents the results of an example simula-
tion of a tram drive system start-up. Th e graphs show 
the fi rst 35 seconds of the course of change in angles 
of rotation (in radians): L, S, P; and angular velocity 
(in rad/s): L L   , S S   , P P   . Th e maximum 
driving speed was 60 km/h and was stabilised for 
 = n/n05 = 0,681. Graphs of similar start-up volumes 
(up to 0,5 s) are presented in Fig. 12.

 

7. Conclusions

Th e article describes the construction and prin-
ciple of operation as well as defi nes a dynamic model 
of the drive system, composed of hollow shaft s and 
four-linkage couplings, used in low-fl oor trams. Due 
to the lack of available data, an important task was to 
determine the mass moments of inertia of the drive 
system components experimentally using a method 
of torsional vibrations of a string. In the next stage, 
the start-up of the NGT6 tram was simulated ac-
cording to specifi ed parameters, followed by the 

simulation of torsional vibrations of individual sys-
tem components.
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